• Title/Summary/Keyword: welding gap

Search Result 260, Processing Time 0.025 seconds

Joint tracking system for butt joint welding process using eddy current sensors with the condition of no gap distance (자기장 센서를 이용한 갭간격이 없는 박판 맞대기 용접부의 용접선 추적 장치)

  • 김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.836-839
    • /
    • 1997
  • In recent years, much progress has been made in the automation of welding coped with a variety of highly flexible sensors. Among these sensors, only the eddy current sensor can detect the center location of the butt joint whose gap distance is zero. Thus, in this study the eddy current sensor is used to develop a robust and useful joint tracking system. The developed system is tested to qualify the performance of the system and seam tracking algorithm is proposed and two simulation are executed to show the performance of the proposed tracking algorithm.

  • PDF

Weld pool size estimation of GMAW using IR temperature sensor (GMA 용접공정에서 적외선 온도 센서를 이용한 용융지 크기 예측)

  • 김병만;김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1404-1407
    • /
    • 1996
  • A quality monitoring system in butt welding process is proposed to estimate weld pool sizes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to prove the integrity of the weld quality. The monitoring variables used are the surface temperatures measured at three points on the top surface of the weldment. The temperature profile is assumed that it has a gaussian distribution in vertical direction of torch movement and verify this assumption through temperature analysis. A neural network estimator is designed to estimate weld pool size from temperature informations. The experimental results show that the proposed neural network estimator which used gaussian distribution as temperature information can estimate the weld pool sizes accurately than used three point temperatures as temperature information. Considering the change of gap size in butt welding, the experiment were performed on various gap size.

  • PDF

Effects of Nd:YAG Laser Welding Parameters on Fatigue Life of Lap Joint Structure in Stainless Steel (스테인리스강의 Nd:YAG 레이저 겹치기 용접부 피로수명에 미치는 용접변수의 영향)

  • Kim, Yong;Yang, Hyeon-Seok;Park, Gi-Yeong;Lee, Gyeong-Don
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.181-183
    • /
    • 2007
  • Experimental analysis was carried out to understand the fatigue phenomena of different thickness stainless steel overlap joining structure by Nd:YAG laser welding. The fatigue life was obtained through fatigue tests with the various levels of applied load. The fatigue life is related with the parameters such as gap condition and penetration depth through experiment. As the results, tensile and fatigue strength were proportional in heat input level and bead width was identified the major factor for joining strength. Also the fatigue life were decreased depend on gap condition, it was more affected at the low load level.

  • PDF

Determination of Optimal Welding Parameter for an Automatic Welding in the Shipbuilding

  • Park, J.Y.;Hwang, S.H.
    • International Journal of Korean Welding Society
    • /
    • v.1 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Because the quantitative relationships between welding parameters and welding result are not yet blown, optimal values of welding parameters for $CO_2$ robotic arc welding is a difficult task. Using the various artificial data processing methods may solve this difficulty. This research aims to develop an expert system for $CO_2$ robotic arc welding to recommend the optimal values of welding parameters. This system has three main functions. First is the recommendation of reasonable values of welding parameters. For such work, the relationships in between the welding parameters are investigated by the use of regression analysis and fuzzy system. The second is the estimation of bead shape by a neural network system. In this study the welding current voltage, speed, weaving width, and root gap are considered as the main parameters influencing a bead shape. The neural network system uses the 3-layer back-propagation model and a generalized delta rule as teaming algorithm. The last is the optimization of the parameters for the correction of undesirable weld bead. The causalities of undesirable weld bead are represented in the form of rules. The inference engine derives conclusions from these rules. The conclusions give the corrected values of the welding parameters. This expert system was developed as a PC-based system of which can be used for the automatic or semi-automatic $CO_2$ fillet welding with 1.2, 1.4, and 1.6mm diameter the solid wires or flux-cored wires.

  • PDF

A Study on Development of an Electromagnetic Inductive Sensor for Automatic Weld Seam Tracking (용접선 자동추적용 전자기유도센서의 개발에 관한 연구)

  • Bae Kang-Yul
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.66-72
    • /
    • 2005
  • An electromagnetic inductive sensor consisted of one exciter and three separated (triple) detectors has been developed for both tracking the weld seam of a workpiece and controlling the sensor-to-workpiece distance (height) simultaneously. The left and right detectors are used to track the seam, while the fore and the other two detectors allow the sensor to determine the height and the gap width by being coupled their outputs together. A series of experiments with the proposed sensor located above a mild steel plate containing a weld seam of gap are carried out to examine the feasibility of the sensor. The results revealed that the proposed sensor could fairly well track the desired seam and also well control the height to be constant even when the gap width of the seam varied. The gap width can be also determined during the seam tracking by using the sensor outputs. As a consequence, these can provide the developed sensor with substantial improvement for industrial uses with respect to the previous electromagnetic sensors being used for the weld seam tracking.

The effects of brazing conditions on the bond strength of the SiC/SiC and SiC/mild steel joints brazed by Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에서 브레이징 조건이 접합강도에 미치는 영향의 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.104-114
    • /
    • 1997
  • The microstructure and bond strength were investigated on the SiC/SiC and SiC/mild steel joints brazed by Ag-5at%Ti alloy. Ag-5at%Ti-2at%Fe and -5at%Fe brazing alloys were also used to see the effects of Fe addition on the bond strength of SiC/SiC brazed joints. Brazing temperature and brazing gap were selected and examined as brazing variables. The microstructure of SiC/SiC brazed joints was affected by Fe addition to the Ag-5at%Ti alloy, but the bond strength was not. Increasing brazing temperature also changed the microstructure of $Ti_5Si_3$ reaction layer and brazing alloy matrix of the SiC/SiC and SiC/mild steel joints, but not the bond strength. Brazing gap had a great effects on the bond strength. Decreasing brazing gap from 0.2 mm to 0.1 mm in SiC/SiC brazing increased the bond strength from 187 MPa to 263 MPa and, in SiC/mild steel brazing, from 189 MPa to 212 MPa. It was concluded that the most important parameter on the bond strength in SiC/SiC and SiC/mild steel brazing was the relative ratio between brazing gap and specimen size.

  • PDF

Effect of Coating Weight on the Laser Weldability in the Welding of Aluminized Steels (레이저용접에서 알루미늄 도금량이 용접성에 미치는 영향)

  • Kim Ki Chol;Cha Joon Ho
    • Korean Journal of Materials Research
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Laser weldability of aluminized steels for deep drawing application has been investigated. Test coupons for Nd:YAG laser welding and $CO_2$ laser welding were prepared trom the commercial steels. According to the test results, total penetration and back bead width of aluminized steels were sensitive to the welding conditions. Bead width at the half thickness of the overlap joint, however, was rather constant. Laser weldability of aluminized steels was superior to that of zinc coated steel. Weld microstructure revealed that overlap zone adjacent to the fusion line was filled with coated materials, which was thought to be desirable to protect weld from crevice corrosion. The aluminum coated materials was also found in the weld metal. Practically no spattering was observed in the laser welding of aluminized steels even when the welding was performed without joint gap. In the welding of zinc coated steel, however, spattering was so severe that it was difficult to get the acceptable weld. Bead quality of aluminized steel laser weld was smooth and stable.

ADVANCED ARGON-ARC WELDING PROCESSES OF AIRCRAFT STRUCTURES FROM HIGH STRENGTH STEELS AND HIGHT ALLOYS

  • Chtrikman, M.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.101-106
    • /
    • 2002
  • Requirements to fabrication processes for arc welding of highly loaded thick-walled joint and problems of research and development in term s of the tendency for the modern aircraft structure development are outlined. A justified, choice of the development line of the new promising welding processes for solution of these problems is presented. A complex of new welding processes and technologies for making highly reliable joints with different thickness (up to 120 mm and more) and length of weld (up to 0.1 m; 0.1-0.5 m and more than 0.5 m) has bee developed. It is shown that the possibility to control the heat flow distribution over the groove surface of the welded joints provides for improved reliability. The new welding processes are equipment are effectively used in serial production of the Mykoyan md Sukhoi supersonic aircrafts as well as in AN-124 Ruslan and AN-225 Mriya wide body aircrafts.

  • PDF

Design and Output Characteristic of AC Pulse Current for MIG Welding of Ai Sheet (박판 Al MIG 용접용 AC펄스 전류 파형의 설계 및 출력특성)

  • 조상명;김태진;이창주;임성룡;공현상;김기정
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • Since new types of vehicles or structures made from thin aluminum alloy are under rapid development and some products are already on the market, welding of aluminium sheet is increasing. MIG(Metal Inert Gas), MIG-Pulse, TIG(Tungsten Inert Gas) welding are the typical Ai welding. MIG welding has the advantage of high speed, but it is difficult to apply to the thin plate, because of bum-through by the high heat input and spatter. MIG-Pulse welding can weld without spatter and burn-through, but when the gap exists at the welding joint, there is quite a possibility of bum-through. TIG welding is difficult to weld at a high speed. AC Pulse welding alternates between DCEP(Direct Current Electrode Positive) and DCEN(Direct Current Electrode Negative). DCEN is higher wire melting rate than DCEP, while lower temperature of droplet than DCEP. In AC Pulse welding, far fixed welding current, wire melting rate increases as the EN ratio increases. For fixed wire feed rate, welding current decreases as the EN ratio increases. Because of these features, the temperature of droplet, the depth of penetration, the width of bead decrease and the reinforcement height increases as EN ratio increases, and these are able to weld at a high speed, lower heat input. It is the purpose of this study that design of AC pulse current waveform for MIG welding of Al sheet and estimation of output characteristic.

An Experimental Study on Root-pass Welding of Open Gap by GMA Welding Process in Pipeline (GMA 용접공정을 이용한 오픈갭 수평고정관 초층 용접의 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Park, Chang-Eun;Na, Hyun-Ho;Lee, Ji-Hye;Jung, Seong-Myeong
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • Since welding process for most pipelines with large diameter has been carried out by the manual process, automation of the welding process is necessary for the sake of consistent weld quality and improvement in productivity. Therefore the development of the optimized algorithm to decide the welding condition is an effective technique to prove the feasibility of interface standards and intelligent control technology to increase productivity and reduce the cost of system integration. In this study, the pipe welding experiment has been carried out using plused GMA welding process to select optimal welding condition. And necessary information in root-pass welding has been obtained by applying in the pipeline using the selected welding conditions through the welding experiment.