• Title/Summary/Keyword: welding defects

Search Result 355, Processing Time 0.028 seconds

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo;Kim, Jang-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.623-628
    • /
    • 2006
  • Laser material processing is a very fast advancing technology for various industrial applications. because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment. battery case has changed over joint geometry from welding of side position to flat one. In the case of a electrolyte injection hole in order to seal it. welding is carried out after pressing Al ball. At this time. an eccentric degree. contact length and gap are worked as a major parameters. As improving the method of Al ball pressing. it was able to reduce an eccentricity. increase the contact length and decrease gap. As a results of a experiment. a sound weld bead shape and crack-free weld bead can be obtained.

Optimization of Pulsed Nd:YAG Laser Welding Conditions for Sealing of Lithium-ion Battery (리튬이온전지의 밀봉용접을 위한 펄스 Nd:YAG레이저 용접조건의 최적화)

  • Kim, Jong-Do;Yoo, Seung-Jo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.339-343
    • /
    • 2005
  • Laser material processing is a very fast growing technology for various industrial applications, because of many advantages. Its major advantage of less and controlled heat input has been exploited successfully for the very critical application of aluminium alloy welding. This study suggested the occurrence source of weld-defects and its solution methods in a welding of lithium ion battery by pulsed Nd:YAG laser. In experiment, battery case has changed over joint geometry from welding of side position to flat one. In case of a electrolyte injection hole in order to seal it, welding is carried out after pressing Al ball. At this time, an eccentric degree, contact length and gap are worked as a major parameters. As improving the method of Al ball pressing, it was able to reduce an eccentricity, increase the contact length and decrease gap. As a results of a experiment, a sound weld bead shape and crack-free weld bead can be obtained.

  • PDF

Hybrid Welding Process for Sheet Metal and Narrow Gap Fill Pass (하이브리드 용접방식을 이용한 박판 및 후판용접공정)

  • Choi, Hae-Woon;Shin, Hyun-Myung;Im, Moon-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.978-983
    • /
    • 2008
  • An application of innovative laser+GMA hybrid welding process is presented for reducing bead humping defects in high speed welding and increasing side wall fusion in narrow groove welding without torch or wire oscillation. In this hybrid process, the laser heat input is applied adjacent to the weld pool at a relatively low power density to produce a wider, flatter weld bead. In bead on plate in sheet metal gauges, the hybrid process was able to produce hump-free welds from 70ipm (${\sim}1780mm/min$) to over 150ipm (${\sim}3810mm/min$) of the travel speed compared to the un-assisted GMAW process. A square-butt joint in 15mm A572 Gr50 steel welds was investigated. A square butt joint with a gap of 3.2mm was filled with 6 passes. Liquid Nitrogen calorimetry and innovative $CO_2$ laser reflective optics were also developed to demonstrate the concept of hybrid welding.

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee Jae-Seok;Sohn Young-Il;Park Ki-Young;Lee Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.59-66
    • /
    • 2006
  • In laser welding, automatic seam tracking is important to adjust the laser head position in real time as it moves along the seam. Also if the joint gap is occurred, filling the missing material into the joint gap is necessary to prevent welding defects and bad welding quality. In general, the joint gap width is not constant along the seam due to a variety of reason. So it is essential to control the filler wire speed into the joint gap to acquire good welding quality. This paper describes an intelligent filler wire feeding device which can control 3-dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. We call this device as Smart Micro Control system(SMC). To achieve this objective, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the developed device. From the experimental results, It was found the possibility that the developed device could be used in welding various 3-dimensional structures.

Influence of Heat Input and Weld Bead Composition on Welding Property in the Laser Welding between Sintered Segment and Mild Steel Shank (소결체와 저탄소강의 레이저용접 특성에 미치는 입열량 및 용접부 성분변화의 영향)

  • Jung Woo-Gwang;Cho Nam-Joon;Kim Sung-Wook;Lee Chang-Hee;Kim Sung-Dea;Lee Joo-Hyung;Park Hwa-Soo
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.425-431
    • /
    • 2004
  • A laser welding was applied between sintered tip of Fe-Co-W and low carbon steel shank for the diamond saw blade. The welding characteristics and formation of defects were investigated carefully for the weld fusion zone in different welding condition. Dendrite arm spacing in weld bead decreased with decrease of heat input. Co and W increased and Fe decreased in the weld fusion zone with increase of the heat input. The corresponding change of composition was observed with the change of beam position. The maximum and total length of crack decreased with increase of the heat input. The crack in weld bead was propagated along the dendrite boundary and was caused mainly by the segregation of constituent during the solidification.

A Study on the Crash Characteristics and Analysis of Spot+adhesive Welds in Automobile B-pillar Parts (자동차 B-pillar부품의 스폿용접 및 접착 혼용 용접부의 충돌특성 및 해석에 관한 연구)

  • Choi, Young-Soo;Yun, Sang-Man;Cho, Yong-Joon;Rhee, Se-Hun
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.72-81
    • /
    • 2011
  • In the present day, the needs of new steel for lightweight car-body have been increased in the automotive industry. however, the resistance spot welding is difficult to apply to the new steel because of the narrow weld current range and defects. As the solutions to these problems, adhesive bonding process is proposed. Adhesive bonding which reduce noise and vibration can be applied to joining the new steel. In this study, crash tests of b-pillar applied the resistance spot welding, structural adhesive bonding, the mixture of the structural adhesives and resistance spot welding were performed. And FEM crash model for b-pillar applied the structural adhesive bonding was developed. The results of experiment and analysis on b-pillar crash test were compared to verify the validity.

The Characteristics of Continuous Waveshape Control for the Suppression of Defects in the Fiber Laser Welding of Pure Titanium Sheet (II) - The Effect According to Control of Overlap Weld Length - (순 티타늄 박판의 파이버 레이저 용접시 결함 억제를 위한 연속의 출력 파형제어 특성(II) - 중첩부 길이변화에 따른 영향 -)

  • Kim, Jong-Do;Kim, Ji-Sung
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.69-74
    • /
    • 2016
  • Because the pure titanium has superior corrosion resistance and formability compared with different material, it is widely used as material of welded heat exchanger. When the welding of heat exchanger is carried out, certain area in which welding start and end are overlapped occurs. The humping of back bead is formed in the overlap area due to partial penetration. Thus in this study, the experiments were carried out by changing the length and wave shape of overlap area, and then the weldabiliay was evaluated through the observation of microstructure, the measurement of hardness and tensile-shear strength test in the overlap area. When overlap length was 9.8mm, humping bead was suppressed. The microstructure of overlap area coarsened and its hardness increased due to remelting. As a result of tensile-shear strength test in the overlap area according to applying the wave shape control, it was confirmed that the overlap area applied wave shape control had more excellent yield strength and ductility.

Heat Transfer Simulation and Effect of Tool Pin Profile and Rotational Speed on Mechanical Properties of Friction Stir Welded AA5083-O

  • El-Sayed, M.M.;Shash, A.Y.;Abd Rabou, M.
    • Journal of Welding and Joining
    • /
    • v.35 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • A 3D transient heat transfer model is developed by ABAQUS software to study the temperature distribution during friction stir welding process at different rotational speeds. Furthermore, AA 5083-O plates were joined by FSW technique. For this purpose, a universal milling machine was used to perform the welding process and a mechanical vice was used to fix the work pieces in the proper position. The joints were friction stir welded at a constant travel speed 50 mm/min and two rotational speed values; 400 rpm and 630 rpm using two types of tools; cylindrical threaded pin and tapered smooth one. At each welding condition the temperature was measured using infra-red thermal image camera to verify the simulated temperature distribution. The welded joints were visually inspected as well as by macro- and microstructure evolutions. In addition, the welded joints were mechanically tested for hardness and tensile strength. The maximum peak temperature obtained was at higher rotational speed using the threaded tool pin profile. The results showed that the rotational speed affects the peak temperature, defects formation and sizes, and the mechanical properties of friction stir welded joints. Moreover, the threaded tool gives superior mechanical properties than the tapered one at lower rotational speed.

Pulsed laser welding of Zr-1%Nb alloy

  • Elkin, Maxim A.;Kiselev, Alexey S.;Slobodyan, Mikhail S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.776-783
    • /
    • 2019
  • Laser welding is usually a more effective method than electron-beam one since a vacuum chamber is not required. It is important for joining Zr-1%Nb (E110) alloy in a manufacturing process of nuclear fuel rods. In the present work, effect of energy parameters of pulsed laser welding on properties of butt joints of sheets with a thickness of 0.5 mm is investigated. The most efficient combination has been found (8-11 J pulse energy, 10-14 ms pulse duration, 780-810 W peak pulse power, 3 Hz pulse frequency, 1.12 mm/s welding speed). The results show that ultimate strength under static loading can not be used as a quality criterion for zirconium alloys welds. Increased shielding gas flow rate does not allow to protect weld metal totally and contributes to defect formation without using special nozzles. Several types of imperfections of the welds have been found, but the major problem is branching microcracks on the surface of the welds. It is difficult to identify the cause of their appearance without additional research on improving the welding zone protection (gas composition and flow rate as well as nozzle configuration) and studying the hydrogen content in the welds.

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.