• 제목/요약/키워드: weldability

검색결과 590건 처리시간 0.028초

A2024-T6/ A6061-T6의 마찰용접 특성에 관한 연구 (A Study on the Properties in Friction Weldability of Dissimilar Aluminum Alloys A2024-T6/ A6061-T6)

  • 이세경;민택기
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.63-69
    • /
    • 2006
  • This study deals with the friction welding of A2024- T6 to A6061- T6; The friction time was variable conditions under the conditions of spindle revolution of 2000rpm, friction pressure of 50MPa, upset pressure of 100MPa, and upset time of 5.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, of friction weld, and so the results were as follows. 1. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 292MPa, which is $94.2\%$ of the base material's tensile strength(310MPa). At the same condition, the maximum shear strength was 2l2MPa, which is equivalent to $103\%$ of the base material's shear strength (205MPa). 2. At the same condition, the maximum vickers hardness was Hv 146 at A2024- T6 nearby weld interface, which is higher Hv3 than condition of the friction time 0.5seconds, and the maximum vickers hardness was Hvl20 from weld interface of A6061-T6, which is higher Hv28 then base material's. 3. The results of microstructure analysis show that the structures of two base materials have fractionized and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

600MPa급 자동차용 고장렬강판의 $CO_2$ 레이저 용접부의 특성에 미치는 보호가스의 영향 (Effect of shield gas on the characteristics of $CO_2$ laser welded 600MPa grade high strength steel)

  • 한태교;이봉근;강정윤
    • 한국레이저가공학회지
    • /
    • 제7권2호
    • /
    • pp.19-26
    • /
    • 2004
  • The effect of shield gas on the weldability, mechanical properties and formability of CO2 laser weld joint in 600MPa grade high strength steel was investigated. Bead on plate welds were made under various welding speed and shield gas. Tensile test was carried out under the load of perpendicular and parallel direction to the weld line, Formability of the joint was evaluated by Erichsen test. As the welding speed increases, the porosity fraction decreases. The porosity fraction in the joint used Ar-$50\%He$ mixed gas as a shield gas was lower than that of the joint used Ar gas. Hardness at the weld metal of full penetrated joint was nearly equal to that of water quenched raw metal. In a tensile test under a perpendicular load to the weld axis, strength and elongation of joint produced by optimum condition were nearly equal to those of base metal. However, the strength of joint in a tensile test under a parallel load to weld axis was higher than that of raw metal, but the elongation of joint was lower than that of raw metal. Elongation and formability were further increased by the method of using Ar+He mixed gas as a shield gas as compared with Ar gas. Formabilities of joints were recorded ranging from $58\%\;to\;70\%$ of that of base metal with different shield gases.

  • PDF

자동차 차체용 1.2GPa급 TRIP 강의 Weld-bond부 너깃경에 따른 인장전단특성에 관한 연구 (A study on tensile shear characteristics for weld-bonded 1.2GPa grade TRIP steels with changes in nugget diameter for automotive body application)

  • 최일동;박지연;김재원;강문진;김동철;김준기;박영도
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.69-77
    • /
    • 2015
  • High strength steels have been continually being developed to improve in fuel economy in automotive and ensure safety of passengers. New bonding and welding methods have been required for improving weldability on high strength steels. In this study, resistance spot welding and Weld-bond with nugget diameters of 4.0mm, 5.0mm, 6.0mm and 7.0mm were produced and tested, respectively. In order to confirm the effect of nugget diameters on tensile shear characteristic of the Weld-bond, tensile shear characteristics of Weld-bond were compared with those of resistance spot welding and adhesive bonding. Peak load of Weld-bond were increased as the nugget diameter increases. After appearing maximum peak load continuous fracture followed with second peak owing to load being carried by resistance spot weldment. Fracture modes of the adhesive layer in Weld-bond fractures were represented by mixed fracture mode, which are cohesive failure on adhesive part and button failure at resistance spot welds. The results showed that the tensile shear properties can be improved by applying Weld-bond on TRIP steel, and more apparent with nugget diameter higher than 5${\surd}$t.

가변 극성 알루미늄 아크 용접의 이론적 배경 고찰 (Theoretical background discussion on variable polarity arc welding of aluminum)

  • 조정호;이중재;배승환;이용기;박경배;김용준;이준경
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.14-17
    • /
    • 2015
  • Cleaning effect is well known mechanism of oxide layer removal in DCEP polarity. It is also known that DCEN has higher heat input efficiency than DCEP in GTAW process. Based on these two renowned arc theories, conventional variable polarity arc for aluminum welding was set up to have minimum DCEP and maximum DCEN duty ratio to achieve the highest heat input efficiency and weldability increase. However, recent several variable polarity GTA research papers reported unexpected result of proportional relationship between DCEP duty ratio and heat input. The authors also observed the same result then suggested combination of tunneling effect and random walk of cathode spot to fill up the gap between experiment and conventional arc theory. In this research, suggested combinational work of tunneling effect and rapid cathode spot changing is applied to another unexpected phenomena of variable polarity aluminum arc welding. From previous research, it is reported that wider oxide removal range, narrower bead width and shallower penetration depth are observed in thin oxide layered aluminum compared to the case of thick oxide. This result was reported for the first time and it was hard to explain the reason at that time therefore the inference by the authors was hardly acceptable. However, the suggested combinational theory successfully explains the result of the previous report in logical way.

시뮬레이션 및 너겟 성장 곡선을 이용한 자동차 차체용 3겹 강판의 저항점 용접성 분석 (Analysis of Weladbility on Resistance Spot Weld for 3 Steel Sheets of Automotive Car Body Using Simulation Method and Nugget Growth Curve)

  • 박영환
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3155-3160
    • /
    • 2010
  • 최근 자동차 산업은 고효율 자동차의 개발에 박차를 가하고 있으며 이에 따라 차체 경량화 및 내식성 방지를 위한 고강도강 및 도금강의 사용이 증가하고 있다. 이에 따라 본 연구에서는 자동차 차체에 쓰이는 3종의 다른 강판에 대하여, 겹침 순서에 따른 용접 특성을 시뮬레이션 기법을 이용하여 분석하였다. 자동차 차체에 많이 사용되는 EDDQ 급의 도금강판 0.7t와 인장강도 440 MPa급의 440R 1.2t, 그리고 AHSS (Advanced High Strength Steel)인 DP 590 0.2t 판재에 대하여 겹치기 순서에 따른 용접 특성을 시뮬레이션 하였고, 너겟 성장 곡선 및 전류에 따른 너겟의 크기로 그 용접성을 분석하였다. 또한 용접 시 발생되는 각 접촉부의 접촉저항을 이용하여 겹침순서에 따른 너겟의 크기를 분석하였으며, 이를 통해 최적의 겹치기 순서를 제안할 수 있었다.

고장력강(HT50) 레이저용접부의 용접잔류응력 및 파괴인성 특성 (The Welding Residual Stress and Fracture Toughness Characteristics of HT50 Laser Welded Joint)

  • 노찬승;방희선;방한서;오종인
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.71-76
    • /
    • 2007
  • Recently, many industries have been employing the application of laser beam welding, due to the resulting high welding quality, such as smaller width of melting and heat affective zone, smaller welding deformation, and fine grains of weldment, compared to arc welding. However, in order to appropriately utilize this welding process with steel structure, the characteristics of welding residual stresses and fracture toughness in welded joints are to be investigated for reliability. Therefore, in this study, the mechanical properties of weldments by arc and laser welding are investigated using FEM to confirm the weldability of laser welding to the general structural steel (HT50). The Charpy impact test and 3-points bending CTOD test are carried out in the range of temperatures between $-60^{\circ}C\;and\;20^{\circ}C$, in order to understand the effect on the fracture toughness of weldments. From the research results, it has been found that the maximum residual stress appears at the center of plate thickness, and that the fracture toughness is influenced by strength mis-match.

SM570-TMC 강의 고온 시 기계적 성질 및 용접접합부의 잔류응력 특징 (Characteristics of Mechanical Properties at Elevated Temperatures and Residual Stresses in Welded joint of SM570-TMC Steel)

  • 이진형;장경호;박현찬;이진희
    • 한국강구조학회 논문집
    • /
    • 제18권3호
    • /
    • pp.395-403
    • /
    • 2006
  • 최근 건설되는 강교량은 지간의 장대화 및 교량으로서의 기능은 물론이고 외적 조형미, 유지관리, 공사기간과 수명주기 비용 등을고려한 구조적 단순함을 요한다. 이러한 요구를 충족시키기 위해 극후판이나 TMCP 강과 같은 고성능 강의 사용이 요구된다. TMCP (Thermo-Mechanical Control Proces)법에 의해 제조되는 TMCP 강은 탄소당량이 적고, 조직이 미세하며, 강도 및 인성이 좋다. 최근에는 인장강도 60MPa급의 고강도 TMCP 강인 SM570-TMC 강이 개발되어 토목구조물에 일부 적용되고 있으며, 점차 그 영역을 확장하려는 추세에 있다. 하지만 이러한 고강도 TMCP 강을 강구조물에 적용하기 위해서는 그 재료적 특성뿐만 아니라 용접 시 발생하는 접합부의 역학적 특징을 명확히 할 필요가 있다. 따라서 본 연구에서는 고온인장실험을 통해서 SM570-TMC 강의 고온시의 기 계적 특성을 조사하였고, 이를 잔류응력 특징을 명확히 하였다.

소방배관용 강관을 위한 반자동 가스메탈아크용접장치 개발과 용접부 특성평가 (Development of Semi-automatic Gas Metal Arc Welding Equipment for Fire Piping and Evaluation of Characteristics of Weld Joints)

  • 임영민;오태석;조현;고진현
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1460-1465
    • /
    • 2012
  • 본 연구에서는 소방배관용 아연도금 강관을 용접하기 위하여 반자동 가스메탈아크용접장치를 개발하고 최적 용접 조건을 확립하고 용접성을 조사하기 위해 보호가스, 전압을 변화시켜 용접시험을 수행하였다. Ar 가스에 $O_2$를 첨가함으로써 미려한 비드외관과 기공률이 감소되었다. 반자동 용접부는 기계적 강도와 용접이음효율이 수동용접부에 비해 약 1.8배 우수하였으며 수압시험에 의해 건전성이 확인되었다. 본 연구에서 개발된 반자동용접장치로 비숙련자도 강관용접이 가능하며 용접결함이 적고 용접생산성을 증대시킬 수 있을 것으로 기대된다.

$6mm^t$조선용 프라이머 코팅강판의 $CO_2$레이저 용접성 (II) - 레이저 용접현상의 동적거동과 기공 및 증발입자의 조성 - (The Weldability of $6mm^t$ Primer-coated Steel for Shipbuilding Using $CO_2$ Laser (II) - Dynamic Behavior of Laser Welding Phenomenon and Composition of Porosity and Vaporized-particle -)

  • 김종도;박현준
    • Journal of Welding and Joining
    • /
    • 제24권2호
    • /
    • pp.71-78
    • /
    • 2006
  • It has been reported that good quality weld beads are not easily obtained during the $CO_2$ CW laser welding of primer coated plate. However, by introducing a small gap clearance in the lap position, the zinc vapor can escape through it and sound weld beads can be acquired. Therefore, this study examines for keyhole behavior by observing the laser-induced plasma and investigates the relation between keyhole behavior and formation of weld defect. Laser-induced plasma has accompanied with the vaporizing pressure of zinc ejecting from keyhole to surface of primer coated plate. This dynamic behavior of plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser welding. As a result of observing the composition of porosity, much of Zn element was found from inner surface of porosity. But Zn was not found from the dimple structure fractured at the weld metal. By analyzing of vaporizing element in laser welding, a component ratio of Zn was decreased by introducing a small gap clearance. Therefore we can prove that the major cause of porosity is the vaporization of primer in lap position. Mechanism of porosity-formation is that the primer vaporized from the lap position accelerates dynamic behavior of the key hole and the bubble separated from the key hole is trapped in the solidification boundary and romaines as porosity.

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF