• Title/Summary/Keyword: weld pass

Search Result 145, Processing Time 0.047 seconds

The Underwater Wet Welding Characteristics of SWS490 Steel (SWS490강의 습식수중용접특성)

  • Park, Gi-Yong;Lee, Sang-Yul;Lee, Byung-Hoon
    • Proceedings of the KWS Conference
    • /
    • 1997.10a
    • /
    • pp.147-150
    • /
    • 1997
  • The characteristics of underwater welding of SWS490 steel were investigated. The bead-on-plate type welding with one or three pass using ilmenite and water-proofed type electrodes was performed by varying welding currents and the sizes of electrodes used. The amounts of hydrogen absorbed inter the weld metal were measured according to the JIS Z 3118 specification and the results were interpreted in terms of the cold cracking behaviours of the welded steel. The microstructural changes as well as the microhardness distribution after underwater welding were also investigated using Vickers microhardness tester and S.E.M (scanning electron microscopy) and O.M (optical microscopy). The results indicated that the cold cracking could be avoided by three pass welding under low current with an electrode with a small diameter.

  • PDF

Analysis of Residual Stress on Circumferential Weldment of Reactor Pressure Vessel (원자로 압력용기 원주방향 용접부의 잔류응력 해석)

  • Kim, Jong-Sung;Jin, Tae-En
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.430-434
    • /
    • 2001
  • To perform the integrity evaluation of RPV more realistically, it is necessary to evaluate the metallurgical microstructure and residual stress considering more real phenomena such as multi-pass welding process and PWHT. Accordingly, firstly, this paper proposes the integrated assessment methodology systematically developed for residual stress on weldment of RPV by using thermodynamics, diffusion theory, finite element method and validation experiment. Also, the residual stress on circumferential weldment of reactor pressure vessel is calculated considering multi-pass welding process by the commercial finite element package, ABAQUS.

  • PDF

High Current Arc Welding Technology of Aluminum Alloy (알루미늄 합금의 대전류 아크용접 기술)

  • Choi, Young-Bae;Kang, Mun-Jin;Kim, Dong-Cheol;Hwang, In-Sung
    • Journal of Welding and Joining
    • /
    • v.31 no.1
    • /
    • pp.21-25
    • /
    • 2013
  • Aluminum alloy, Al5083-O, is one of candidate materials for the LNG storage tank, because of its excellent weldability, cryogenic characteristics, and corrosion resistance. The good weldability of Al5083-O is very important in LNG storage tank manufacturing. In this study, high current metal inert gas(MIG) welding process was used to get one pass welding of thick plate aluminum alloy. Bead on plate(BOP) welding was performed to evaluate the effect of welding conditions on the height of bead and depth of penetration. The optimum welding conditions were derived to get one pass welding of the thickness of 14.5mm. The mechanical properties of the welded joint were evaluated. The cross-sectional macro test, tensile test, and bending test satisfied the class rule.

An Experimental Study on Root-pass Welding of Open Gap by GMA Welding Process in Pipeline (GMA 용접공정을 이용한 오픈갭 수평고정관 초층 용접의 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Park, Chang-Eun;Na, Hyun-Ho;Lee, Ji-Hye;Jung, Seong-Myeong
    • Journal of Welding and Joining
    • /
    • v.29 no.3
    • /
    • pp.64-69
    • /
    • 2011
  • Since welding process for most pipelines with large diameter has been carried out by the manual process, automation of the welding process is necessary for the sake of consistent weld quality and improvement in productivity. Therefore the development of the optimized algorithm to decide the welding condition is an effective technique to prove the feasibility of interface standards and intelligent control technology to increase productivity and reduce the cost of system integration. In this study, the pipe welding experiment has been carried out using plused GMA welding process to select optimal welding condition. And necessary information in root-pass welding has been obtained by applying in the pipeline using the selected welding conditions through the welding experiment.

Development of Multi-pass Welding Method for Lifting Lug by Robot Weaving (로봇 위빙에 의한 리프팅 러그 다층 용접법 개발)

  • Kim, Young-Zoo;Kim, Kang-Uk;Kim, Suk-Hyoung;Kang, Sung-Won;Kim, Soo-Ho
    • Journal of Welding and Joining
    • /
    • v.25 no.6
    • /
    • pp.44-52
    • /
    • 2007
  • A welding process of a lifting lug for lifting heavy objects is one of the important welding processes directly related to the safety in shipbuilding. Welding a lifting lug is done in the manually and takes about forty minutes. Working environment for the lifting lug welding is very poor due to an radiant heat and a harmful fume. The purpose of this study is to develop methods of multi-pass welding using the lifting lug welding robot system. This study shows robot welding methods to achieve proper corner, straight and connection welding and an effectiveness of application.

Study on PWM Control in Inverter Resistance Spot Welding (인버터 저항 점용접 장치의 PWM제어에 관한 연구)

  • Kwon Hyo-Chul;Choi Yong-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.169-171
    • /
    • 2006
  • Nowadays, inverter welding is risen in spot welding, because can secure productivity. This study made changed output wave form of inverter welding equipment by several forms and measured electric current that pass to the second of transformer for welding. Purpose of study is finding electric current of most suitable form. Also, studied applies PID control in electric current control of inverter resistance weld device and heightens electric current precision.

  • PDF

강용접부의 표면균열 성장거동에 관한 연구 1

  • 정세희;박재규;이종기
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1988
  • Generally, as the welded region of weld structures has the incomplete bead and welded deposit which are able to behave like the surface cracks occasinally, there is a high possibility that the fatigue fracture of the weld structures is due to the surface cracks on the wlded region. This study was done to investigate the effects of post weld heat treatment (PWHT) on the fatigue behaviors of the surface crack of the heat affected zone (HAZ) for the multi-pass welds under the repetitive pure bending moment. The obtained results are summarized as follows : 1. The crack grows to the depth direction initially as the number of cylces increase, the amount of crack length is increased for the surface dir3ction and cive versa for the depth direction. 2. The fatigue life is increased in a order of as weld, PWHT specimens and parent. 3. As the number of cycles increase, the crack length is increased to th surface direction. The increase of the depth length is blunted at the center of specimen thickness. 4. The fatigue crack growth of PWHT specimens to the surface direction is dependent upon the holding time and applied stress during PWHT. In order words, the crack growth rate decreases with the holding time and increases with the applied stress during PWHT. 5. As the crack grows, the aspect formed in the course of crack propagation approaches to semicircle for parent and ellipse with the largest semidiameter for PWHT ($1/4hr, 15kgf/mm^2$) 6. At depth direction, it is difficult to apply to the paris' equation because of the scattered data between the crack growth rate and the stress intensity factor range.

  • PDF

Techniques for Estimating Temper Bead Welding Process by using Temperature Curves of Analytical Solution (해석 해의 온도곡선을 이용한 템퍼비이드 용접공정 평가기술)

  • Lee, Ho-Jin;Lee, Bong-Sang;Park, Kwang-Soo;Byeon, Jin-Gwi;Jung, In-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.51-57
    • /
    • 2010
  • Brittle microstructure created in a heat affected zone (HAZ) during the welding of low alloy steel can be eliminated by post-weld heat treatment (PWHT). If the PWHT is not possible during a repair welding, the controlled bead depositions of multi-pass welding should be applied to obtain tempering effect on the HAZ without PWHT. In order to anticipate and control the tempering effect during the temper bead welding, the definition of temperature curve obtained from the analytical solution was suggested in this research. Because the analytical solution for heat flow is expressed as a mathematical equation of weld parameters, it may be effective in anticipating the effect of each weld parameter on the tempering in HAZ during the successive bead depositions. The reheating effect by the successive bead layer on the brittle coarse grained HAZ formed by earlier bead deposition was estimated by comparing the overlapped distance between the temperature curves in the HAZ. Three layered weld specimens of SA508 base metal with A52 filler were prepared by controlling heat input ratio between layers. The tempering effect anticipated by using the overlapped distance between the temperature curves was verified by measuring the micro-hardness distribution in the HAZ of prepared specimens. The temperature curve obtained from analytical solution was expected as a good tool to find optimal temper bead welding conditions.

Effects of High Current and Welding Wire Diameter on the Magnesium Vaporization and Mechanical Properties of Al5083 Arc Welds (대전류 및 용가재 직경에 따른 Al5083 아크 용접부 마그네슘 기화 및 기계적 성질)

  • Kwon, Heimi;Park, Chul-Ho;Hong, In-Pyo;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.84-89
    • /
    • 2013
  • The demand of LNG tank and the constituting material, i.e., the Al5083 thick plate, increased due to the rapid growth LNG market. To weld the Al5083 thick plate, the gas metal arc welding (GMAW) of high current is necessary to increase manufacturing productivity incurred by the multi pass welding. However, the arc welding vaporizes the volatile element such as magnesium (Mg). This phenomenon changes the Mg composition of the weld metal and the mechanical properties. The study investigated the weldability of Al5083 alloys after conducting high current GMAW. The Al5083 alloy was welded by using different size of welding wires and high current (800-950A). As the arc current increased from 800A to 950A, the mechanical strength decreased and the secondary dendrite arm spacing (SDAS) increased. Even though the arc current increased SDAS, the mechanical strength decreased due to the Mg loss in the weldment. The large diameter of welding wire decreased the dilution of the weld, therefore increasing the Mg content and the strength of the weld. For the reason, the content of Mg in welds was a major parameter to determine the mechanical property for the high current GMAW. For the arc current between 800A and 950A, the yield strength of the weldments showed a relationship with the weight percent of Mg content ($X_{Mg}$): Y.S = 27.9($X_{Mg}$)-11.

Effect of Up-and-Down Torch Oscillation for Providing Uniform Heat Input along the Sidewall of Gap on Ultra Narrow Gap Welding (울트라 내로우 갭 용접에서 갭 내 고른 아크입열 분포를 위한 상ㆍ하 토치요동 효과)

  • 김두영;나석주
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.85-91
    • /
    • 2003
  • Narrow gap welding has many advantages over conventional V-grooved butt welding such as high productivity, small deformation and improved mechanical property of joints. With narrower groove gap, less arc heat input is expected will all the other advantages of narrow gap welding. The main defects of narrow gap welding include the lack of root fusion, convex bead surface and irregular surface, all of which have negative effects on the next welding pass. This paper suggests an up-and-down torch oscillation for ultra narrow gap welding with gap size of 5mm and investigates the proper welding conditions to fulfill the reliable and high welding quality. First, GMA welding model was suggested for ultra narrow gap welding system with Halmoy's model referenced for wire melting modeling. And the arc length in ultra narrow gap was defined. Secondly, based on the experimental results of up-and-down torch oscillation welding, phase shift of current and wire extension length were simulated for varying oscillation frequency to show that weld the bead shape in ultra narrow gap welding can be predicted. As the result, it was confirmed that reliable weld quality in ultra narrow gap welding can be achieved with up-and-down torch oscillation above 15Hz due to its ability to provide uniform heat input along the sidewall of gap.