• Title/Summary/Keyword: weighting

Search Result 2,515, Processing Time 0.028 seconds

Design and Weighting Effects in Small Firm Server in Korea

  • Lee, Keejae;Lepkowski, James M.
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.775-786
    • /
    • 2002
  • In this paper, we conducted an empirical study to investigate the design and weighting effects on descriptive and analytic statistics. The design and weighting effects were calculated for estimates produced from the 1998 small firm survey data. We considered the design and weighting effects on coefficients estimates of regression model using the design-based approach and the GEE approach.

New Weighting Factor of 2D Isotropic-Dispersion Finite Difference Time Domain(ID-FDTD) Algorithm

  • Zhao, Meng;Koh, Il-Suek
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.4
    • /
    • pp.139-143
    • /
    • 2008
  • In this paper, a new scheme to calculate the weighting factor of the 2-D isotropic-dispersion finite difference time domain(ID-FDTD) is proposed. The weighting factor in [1] was formulated in free space, so that it may not be optimal in dielectric media. Therefore, the weighting factor was reformulated by considering the material properties and using the least mean square method. As a result, a minimum numerical dispersion error for any dielectric media is guaranteed.

Weighting Value Evaluation of Condition Assessment Item in Reinforced Earth Retaining Walls by Applying Hybrid Weighting Technique (혼합 가중치를 적용한 보강토 옹벽의 상태평가항목 가중치 평가)

  • Lee, Hyung Do;Won, Jeong-Hun;Seong, Joohyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.83-93
    • /
    • 2017
  • This study proposed the new weighting values and fault points of condition assessment items for reinforced earth retaining walls based on the combination the inspection data and hybrid weighting technique. Utilizing the inspection data of 161 reinforced earth retaining walls, multi regression analysis and entropy technique were applied to gain the weighting values of condition assessment items. In addition, the weighting values by AHP technique was analyzed based on the opinion of experts. By appling hybrid weighting technique to the calculated weighting values obtained by the individual technique, the new weighting values of condition assessment items were proposed, and the fault points and fault indices of reinforced earth retaining walls were proposed. Results showed that the rank of the weighting value of the condition evaluation items was fluctuated according to the multiple regression analysis, AHP technique, and entropy technique. There was no duplication of the rank of the weighting value while the current weighting value was overlapped. Specially, in the rsults of multi regression analysis, two condition assessment items were occupied 70% of the total weights. When the proposed weighting values were applied to existing reinforced earth retaining wall of 161, 16 reinforced earth retaining walls showed the increased risk rank and 31 represented the decreased risk rank.

A Study on the Methods to Calculate Mixed Weights of the Condition Evaluation of Rock Slope (절리암반비탈면의 상태평가항목에 대한 혼합가중치 산정방법에 관한 연구)

  • Byun, Yoseph;Choi, Jungchan;Seong, Joohyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.37-44
    • /
    • 2018
  • This study proposed the modified weighting values for jointed rock slopes. The studies on deduction of evaluation index and calculation of weighting, development of criteria for evaluation and evaluation models have been conducted through decision making techniques such as the Delphi method and the AHP method by many researchers. Because these decisions making techniques may be less objective, it is necessary to calculate reasonable weighting considering both an objective weighting and a subjective weighting simultaneously. In this study, utilizing the inspection data of jointed rock slopes, an objective weighting that the concept of entropy is applied was calculated. And the subjective weighting values by AHP technique was calculated based on the opinion of experts. And a modified weighting was suggested by combining the two. As a result, it was found that jointed rock slopes have higher weighting in artificial factors and the damage status items. In addition based on the finally suggested weighting (mixed weighting), the revised evaluation criteria could be presented by converting it into the evaluation score (76 points). And it is expected that it could be usefully utilized upon inspections on cutting slopes and safety diagnosis since objective and highly reliable criteria compared to the condition evaluation criteria that are currently used could be presented through the results of the study.

Imposed Weighting Factor Optimization Method for Torque Ripple Reduction of IM Fed by Indirect Matrix Converter with Predictive Control Algorithm

  • Uddin, Muslem;Mekhilef, Saad;Rivera, Marco;Rodriguez, Jose
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.227-242
    • /
    • 2015
  • This paper proposes a weighting factor optimization method in predictive control algorithm for torque ripple reduction in an induction motor fed by an indirect matrix converter (IMC). In this paper, the torque ripple behavior is analyzed to validate the proposed weighting factor optimization method in the predictive control platform and shows the effectiveness of the system. Therefore, an optimization method is adopted here to calculate the optimum weighting factor corresponds to minimum torque ripple and is compared with the results of conventional weighting factor based predictive control algorithm. The predictive control algorithm selects the optimum switching state that minimizes a cost function based on optimized weighting factor to actuate the indirect matrix converter. The conventional and introduced weighting factor optimization method in predictive control algorithm are validated through simulations and experimental validation in DS1104 R&D controller platform and show the potential control, tracking of variables with their respective references and consequently reduces the torque ripple.

Weighting objectives strategy in multicriterion fuzzy mechanical and structural optimization

  • Shih, C.J.;Yu, K.C.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.373-382
    • /
    • 1995
  • The weighting strategy has received a great attention and has been widely applied to multicriterion optimization. This gaper examines a global criterion method (GCM) with the weighting objectives strategy in fuzzy structural engineering problems. Fuzziness of those problems are in their design goals, constraints and variables. Most of the constraints are originated from analysis of engineering mechanics. The GCM is verified to be equivalent to fuzzy goal programming via a truss design. Continued and mixed discrete variable spaces are presented and examined using a fuzzy global criterion method (FGCM). In the design process a weighting parameter with fuzzy information is introduced into the design and decision making. We use a uniform machine-tool spindle as an illustrative example in continuous design space. Fuzzy multicriterion optimization in mixed design space is illustrated by the design of mechanical spring stacks. Results show that weighting strategy in FGCM can generate both the best compromise solution and a set of Pareto solutions in fuzzy environment. Weighting technique with fuzziness provides a more relaxed design domain, which increases the satisfying degree of a compromise solution or improves the final design.

Simultaneous optimization method of feature transformation and weighting for artificial neural networks using genetic algorithm : Application to Korean stock market

  • Kim, Kyoung-jae;Ingoo Han
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.323-335
    • /
    • 1999
  • In this paper, we propose a new hybrid model of artificial neural networks(ANNs) and genetic algorithm (GA) to optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study, we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs. In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs. By this procedure, we can improve the performance and enhance the generalisability of ANNs.

  • PDF

An Improvement Performance of S/N Ratio in DMTI System Using Weighted Pulse Trains (Weighting된 펄스 열을 사용하는 DMTI 시스템의 S/N북 개선 특성)

  • Go, Seong-Seon;Lee, Jae-Gyun;Yun, Hyeon-Bae
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.60-65
    • /
    • 1985
  • A method of weighting of a staggered pulse train is presented and an improvement per-formance of the signal-to-noise ratio for each case is compared. As the result of a computer simulation, the signal-to-noise ratio for weighting of a stagger-ed pulse train is a great improvement on the case of an uniform pulse train. The signal-to-noise ratio of optimum weighting is more improved than that of binomial weighting, it is known that the signal-to-noise ratio is improved as the increasing of the number of delay line cancellers, and it is shown that the signal-to-noise ratio is improved by weighting of the MTI output pulses before the integration process.

  • PDF

Determination of the Frequency Weighting Curves for the Estimation of Discomfort by the Steering Wheel Vibration (조향휠 진동의 안락성 평가를 위한 주파수 가중치 곡선 결정)

  • 홍석인;장한기;김승한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1048-1052
    • /
    • 2003
  • This study aims to derive frequency weighting curves for the estimation of driver's discomfort by steering wheel vibration in the vertical and rotational direction with respect to a steering column. Subjective tests for the determination of equal sensation curves, inverse of frequency weighting curves, for the two kinds of vibrations were performed using the sinusoidal signals with reference amplitudes from 0.2m/s$^2$ to 0.4 m/s$^2$ in the frequency range from 5㎐ to 100㎐. Twelve subjects joined at the tests, and median values of the twelve judgments were used to determine the frequency weighting curves. Second experiment was followed to determine relative magnitude between the two frequency weighting curves by direct comparison of discomfort due to the two kinds of vibrations at 50㎐, which showed discomfort by the rotational vibration was 1.5 times of that by the vertical vibration.

  • PDF

A Study on the Realization of Variable Spatial Filtering Detector with Multi-Value Weighting Function (계측용 공간필터의 가변적 다치화된 가중치 실현에 관한 연구)

  • Jeong, Jun-Ik;Han, Young-Bae;Go, Hyun-Min;Rho, Do-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.481-483
    • /
    • 1998
  • In general, spatial filtering method was proposed to simplify measurement system through parallel Processing hardware. Spatial filtering is a method of detection that we can get a spatial pattern information, as we process a special space pattern, to say, as we process spatial parallel process by using the spatial weighting function. The important processing characteristics will be depended in according to how ire design a spatial weighting function, a spatial sensitive distribution. The form of the weighting function which is realized from the generally used spatial filtering is fixed and the weighting value was already became a binary-value. In this paper, we propose a new method in order to construct adaptive measurement systems. This method is a weighting function design to make multi-valued and variable.

  • PDF