• Title/Summary/Keyword: weighted symmetrization procedure

Search Result 2, Processing Time 0.016 seconds

Weighted Carlson Mean of Positive Definite Matrices

  • Lee, Hosoo
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.479-495
    • /
    • 2013
  • Taking the weighted geometric mean [11] on the cone of positive definite matrix, we propose an iterative mean algorithm involving weighted arithmetic and geometric means of $n$-positive definite matrices which is a weighted version of Carlson mean presented by Lee and Lim [13]. We show that each sequence of the weigthed Carlson iterative mean algorithm has a common limit and the common limit of satisfies weighted multidimensional versions of all properties like permutation symmetry, concavity, monotonicity, homogeneity, congruence invariancy, duality, mean inequalities.

Weighted Geometric Means of Positive Operators

  • Izumino, Saichi;Nakamura, Noboru
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.213-228
    • /
    • 2010
  • A weighted version of the geometric mean of k ($\geq\;3$) positive invertible operators is given. For operators $A_1,{\ldots},A_k$ and for nonnegative numbers ${\alpha}_1,\ldots,{\alpha}_k$ such that $\sum_\limits_{i=1}^k\;\alpha_i=1$, we define weighted geometric means of two types, the first type by a direct construction through symmetrization procedure, and the second type by an indirect construction through the non-weighted (or uniformly weighted) geometric mean. Both of them reduce to $A_1^{\alpha_1}{\cdots}A_k^{{\alpha}_k}$ if $A_1,{\ldots},A_k$ commute with each other. The first type does not have the property of permutation invariance, but satisfies a weaker one with respect to permutation invariance. The second type has the property of permutation invariance. We also show a reverse inequality for the arithmetic-geometric mean inequality of the weighted version.