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Abstract. Taking the weighted geometric mean [11] on the cone of positive definite ma-

trix, we propose an iterative mean algorithm involving weighted arithmetic and geometric

means of n−positive definite matrices which is a weighted version of Carlson mean pre-

sented by Lee and Lim [13]. We show that each sequence of the weigthed Carlson iterative

mean algorithm has a common limit and the common limit of satisfies weighted multidi-

mensional versions of all properties like permutation symmetry, concavity, monotonicity,

homogeneity, congruence invariancy, duality, mean inequalities.

1. Introduction

For positive real numbers a and b, the sequences {an} and {bn} defined by

a0 = a, b0 = b, an+1 =
1
2
(an + bn), bn+1 =

√
an+1bn

converge to a common limit. This is called Borchardt’s algorithm [5]. In a general-
ization of Borchardt’s algorithm with a suitable incomplete elliptic integral repre-
sentation and with “permutation symmetry,” Carlson [6] has found a 3-dimensional
iterative mean algorithm involving arithmetic and geometric means of positive reals.
For positive reals a0 = a, b0 = b and c0 = c, the three sequences defined by

an+1 =
(an + bn

2
an + cn

2

) 1
2
,

bn+1 =
(bn + cn

2
an + bn

2

) 1
2
,

cn+1 =
(an + cn

2
bn + cn

2

) 1
2
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approach to a common limit. This satisfies the permutation symmetry and includes
Borchardt’s algorithm (when b = c) and the common limit has a symmetric integral
representation. A key observation in the Carlson algorithm is that it is a compo-
sition of two symmetrization procedures: (an+1, bn+1, cn+1) = δ(an, bn, cn) where
δ = γ ◦ β and

β(a, b, c) =
1
2
(b + c, a + c, a + b), γ(a, b, c) = (

√
bc,
√

ac,
√

ab).

The geometric mean of two positive definite matrices A and B is defined by
A#B = A1/2(A−1/2BA−1/2)1/2A1/2 and is regarded as a unique positive definite
solution of the Riccati equation XA−1X = B [12]. In the Riemannian manifold of
positive definite matrices equipped with the Riemannian metric (it coincides with
the Hessian metric of the logarithmic barrier functional) ds = ||A−1/2dA A−1/2||2 =(
tr(A−1dA)2

)1/2 ([10, 2, 3, 12]), A#B is the unique metric midpoint of A and B
for the Riemannian metric distance satisfying the symmetry A#B = B#A.
q It has been a long-standing problem to extend the two-variable geometric mean
of positive definite matrices to n-variables, n ≥ 3, and a variety of attempts may be
found in the literature. Two recent approaches have been given by Ando-Li-Mathias
[1] and Bini-Meini-Poloni [4] via “symmetrization methods” and induction. From
these successful extensions of geometric means of n-positive definite matrices, Lee
and Lim [13] have generalized Carlson’s algorithm from the case that variables vary
over 3-dimensinal positive real numbers to the case that variables vary over multi-
variable positive definite matrices preserving permutation symmetry.
In [11], the authors have constucted a weighted geometric mean Gn(ω;A1, . . . , An)
where ω varies over n−dimentional positive probability vectors via weighted ver-
sion of Bini-Meini-Poloni symmetrization procedure and induction, satisfying the
weighted version of ten properties of ALM geometric mean.
The main purpose of this paper is to propose weighted Carlson means based on a
weighted version of the generalized permutation symmetrization procedure in [13].
For a positive probability vector ω = (w1, . . . , wn) and an n-tuple of positive definite
matrices A = (A1, . . . , An), our symmetrization method is given by

(A(0)
1 , . . . , A(0)

n ) = (A1, . . . , An),

(A(r+1)
1 , . . . , A(r+1)

n ) = δω(A(r)
1 , . . . , A(r)

n ),

where δω = γω ◦ βω, βω the weighted Ando-Li-Mathias symmetrization procedure
of arithmetic mean and γω is the weighted Bini-Meini-Poloni symmetrization pro-
cedure of geometric mean. We show that the sequences {A(r)

i }∞r=0, i = 1, . . . , n,
converge to a common limit, yielding a weighted Carlson mean Cn(ω;A). In Sec-
tion 4, we present all properties of the weighted Carlson mean of positive definite
matrices.



Weighted Carlson Mean of Positive Definite Matrices 481

2. The Convex Cone of Positive Definite Matrices

Let M(m) be the space of m × m complex matrices equipped with the op-
erator norm || · ||, H(m) the space of m × m complex Hermitian matrices, and
Ω = Ω(m) the convex cone of positive definite Hermitian matrices. The general
linear group GL(m,C) acts on Ω(m) transitively via congruence transformations
ΓM (X) = MXM∗. For X, Y ∈ H(m), we write that X ≤ Y if Y − X is pos-
itive semidefinite, and X < Y if Y − X is positive definite (positive semidefi-
nite and invertible). Each positive semidefinite matrix A has a unique positive
semidefinite square root, denoted by A1/2. For A ∈ H(m), λj(A) are the eigen-
values of A in non-increasing order: λ1(A) ≥ λ2(A) ≥ · · · ≥ λm(A). We note
that the operator norm of a Hermitian matrix A coincides with its spectral norm
||A|| = max{|λj(A)| : 1 ≤ j ≤ m}. The Thompson metric given by

d(A,B) = max{log M(B/A), log M(A/B)},(2.1)

where M(B/A) = inf{α > 0 : B ≤ αA} = λ1(A−1/2BA−1/2) is a complete metric
on the open convex cone Ω = Ω(m). For 0 < A ≤ B, we denote [A,B] = {X > 0 :
A ≤ X ≤ B}.

Lemma 2.1. Let 0 < A ≤ B. If X, Y ∈ [A,B] then d(X, Y ) ≤ d(A,B).

Lemma 2.2. The Thompson metric on Ω(m) satisfies

d

(
n∑

i=1

Ai,
n∑

i=1

Bi

)
≤ max{d(Ai, Bi)}n

i=1

for any Ai, Bi ∈ Ω(m), 1 ≤ i ≤ n.

The following additive contraction theorem will play a key role for our purpose.

Proposition 2.3.[[14]] Let A be a l × l positive semidefinite matrix. Then

d(A + X, A + Y ) ≤ α

α + β
d(X, Y ), X, Y ∈ Ω(m)

where α = max{λ1(X), λ1(Y )} and β = λl(A).

3. Weighted Geometric Means of Positive Definite Matrices

The curve t 7→ A#tB := A1/2(A−1/2BA−1/2)tA1/2 is a minimal geodesic line
between A and B and its geodesic middle A#B := A#1/2B is known as the geo-
metric mean of A and B.
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Theorem 3.1.[[2]] For A,B, C ∈ Ω and M ∈ GL(m,C),

(1) d(A,B) = d(A−1, B−1) = d(MAM∗,MBM∗);

(2) d(A#B,A) = d(A#B,B) = 1
2d(A,B);

(3) for all s, t ∈ [0, 1], d(A#tB,A#sB) = |s− t|d(A,B) and

d(A#tB,C#tD) ≤ (1− t)d(A,C) + td(B,D).(3.1)

The non-positive curvature property (3.1) for the Thompson metric is appeared
in [8] even for positive definite operators on a Hilbert space.
The following properties for the weighted geometric mean A#tB are well-known.

Lemma 3.2. Let A,B, C, D ∈ Ω and let t ∈ [0, 1]. Then

(i) A#tB = A1−tBt if AB = BA;

(ii) (aA)#t(bB) = a1−tbt(A#tB) for a, b > 0;

(iii) (Löwner-Heinz inequality) A#tB ≤ C#tD if A ≤ C and B ≤ D;

(iv) M(A#tB)M∗ = (MAM∗)#t(MBM∗) for non-singular M ;

(v) A#tB = B#1−tA, (A#tB)−1 = A−1#tB
−1;

(vi) (λA+(1−λ)B)#t(λC+(1−λ)D) ≥ λ(A#tC)+(1−λ)(B#tD) for λ ∈ [0, 1];

(vii) det(A#tB) = det(A)1−tdet(B)t;

(viii) ((1− t)A−1 + tB−1)−1 ≤ A#tB ≤ (1− t)A + tB.

A#tB as a two-variable weighted mean, denoted by G2(1 − t, t;A,B), the au-
thors of [11] have constucted for each n > 2 a weighted geometric mean Gn(ω;A1,
. . . , An), where ω = (w1, . . . , wn) varies over n-dimentional positive probability vec-
tors via weighted version of Bini-Meini-Poloni symmetrization procedure [4]. Let
(w1, w2, w3) be a positive probability vector and let A1, A2, A3 be positive definite
matrices. Starting with (A(0)

1 , A
(0)
2 , A

(0)
3 ) = (A1, A2, A3) define(

A
(1)
1 , A

(1)
2 , A

(1)
3

)
=
(
A1#1−w1(A2# w3

1−w1
A3),

A2#1−w2(A1# w3
1−w2

A3),

A3#1−w3(A1# w2
1−w3

A2)
)

,

...(
A

(r)
1 , A

(r)
2 , A

(r)
3

)
=
(
A

(r−1)
1 #1−w1(A

(r−1)
2 # w3

1−w1
A

(r−1)
3 ),

A
(r−1)
2 #1−w2(A

(r−1)
1 # w3

1−w2
A

(r−1)
3 ),

A
(r−1)
3 #1−w3(A

(r−1)
1 # w2

1−w3
A

(r−1)
2 )

)
.



Weighted Carlson Mean of Positive Definite Matrices 483

It is shown that the sequences {A(r)
i }∞r=0, i = 1, 2, 3, converge to a common limit,

yielding geometric means of 3-positive definite matrices G3(w1, w2, w3;A1, A2, A3).
Inductively, for n−dimensional positive probability vector ω = (w1, w2, . . . , wn), the
weighted symmetrization procedure of n-positive definite matrices is defined by

γω(A) = (A1#1−w1Gn−1(ω̂ 6=1;Ak 6=1), . . . , An#1−wnGn−1(ω̂ 6=n;Ak 6=n))

where ω̂ 6=i = 1
1−wi

(w1, . . . , wi−1, wi+1, . . . , wn) is (n−1)-dimensional positive prob-
ability vector and Ak 6=i = (A1, . . . , Ai−1, Ai+1, . . . , An) of A = (A1, . . . , An). Then
each component of the iteration γr

ω(A) = (A(r)
1 , . . . , A

(r)
n ) approaches to a common

limit, yielding n-dimensional weighted geometric mean Gn(ω;A).
The weighted geometric means of n−positive definite matrices satisfy the following
properties.

Theorem 3.3. Let A = (A1, A2, . . . , An), B = (B1, B2, . . . , Bn) ∈ Ωn and let
ω = (w1, w2, . . . , wn) be a positive probability vector.

(P1) Gn(ω;A1, . . . An) = Aw1
1 · · ·Awn

n for commuting Ai’s.

(P2) (Joint homogeneity)

Gn(ω; a1A1, . . . , anAn) = aw1
1 · · · awn

n Gn(ω;A1, . . . , An).

(P3) (Permutation invariance) For any permutation σ,

Gn(ωσ;Aσ(1), . . . , Aσ(n)) = Gn(ω;A1, . . . , An).

(P4) (Monotonicity) If Bi ≤ Ai for all 1 ≤ i ≤ n, then

Gn(ω;B1, . . . , Bn) ≤ Gn(ω;A1, . . . , An).

(P5) (Continuity) The map Gn(ω; ·) is continuous.

(P6) (Congruence invariance) For any invertible matrix M ,

Gn(ω;MA1M
∗, . . . ,MAnM∗) = MGn(ω;A1, . . . , An)M∗.

(P7) (Joint Concavity) For 0 ≤ λ ≤ 1,

Gn(ω;λA1 + (1− λ)B1, . . . , λAn + (1− λ)Bn)
≥ λGn(ω;A1, . . . , An) + (1− λ)Gn(ω;B1, . . . , Bn).

(P8) (Self-duality) Gn(ω;A−1
1 , . . . , A−1

n ) = Gn(ω;A1, . . . , An)−1.

(P9) (Determinantal identity) det(Gn(ω;A1, . . . , An)) =
∏n

i=1(detAi)ωi .
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(P10) (Arithmetic-geometric-harmonic mean inequality)(
n∑

i=1

wiA
−1
i

)−1

≤ Gn(ω;A1 . . . , An) ≤
n∑

i=1

wiAi.

We call a mean of n-variables satisfying these properties a weighted geometric
mean. We note that for ω = (1/n, . . . , 1/n) the geometric means obtained by Ando-
Li-Mathias [1] and by Bini-Meini-Poloni [4] satisfy (P1)-(P10).

Remark 3.4. In [11], the authors obtained a stronger version of (P5) for the
Thompson metric;

(P11) d(Gn(ω;A1, . . . , An),Gn(ω;B1, . . . , Bn)) ≤
∑n

i=1 wid(Ai, Bi).

Proposition 3.5. Let ω = (w1, . . . , wn) and ν = (v1, . . . , vn) be positive probability
vectors. Then

(3.2) d(Gn(ω;A1, . . . , An),Gn(ν;B1, . . . , Bn)) ≤
n∑

i,j=1

wivjd(Ai, Bj).

Proof. By (P1) and (P11), we have

d(Gn(ω;A1, . . . , An),Gn(ν;B1, . . . , Bn))
=d(Gn(ω;A1, . . . , An),Gn(ω;Gn(ν;B1, . . . , Bn), . . . ,Gn(ν;B1, . . . , Bn))

≤
n∑

i=1

wid(Ai,Gn(ν;B1, . . . , Bn))

=
n∑

i=1

wid(Gn(ν;Ai, . . . , Ai),Gn(ν;B1, . . . , Bn))

≤
n∑

i=1

n∑
j=1

wivjd(Ai, Bj)).

4. Higher Order Weighted Carlson’s Algorithm

Let ∆n = {(w1, . . . , wn) ∈ (0, 1)n :
∑n

i=1 wi = 1} be the set of n(n ≥ 2)-
dimensional positive probability vectors. For ω = (w1, . . . , wn) ∈ ∆n, we denote

ω 6=j = (w1, . . . , wj−1, wj+1, . . . , wn)
ω 6=i,j = (w1, . . . , wi−1, wi+1, . . . , wj−1, wj+1, . . . , wn) (i < j)

ω̂ 6=j =
1

1− wj
ω 6=j ∈ ∆n−1, (n ≥ 3)
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and wjk =
{ wk

1−wj
, if j 6= k

0, if j = k.
Then we have ω̂ 6=j = (ωj1, . . . , ωj(j−1), ωj(j+1), . . . , ωjn).

For A = (A1, . . . , An+1) ∈ Ωn+1 and ω = (w1, . . . , wn+1) ∈ ∆n+1, we consider the
symmetrization procedure of arithmetic and harmonic means

(4.1) βω(A) =

(
n+1∑
k=1

w1kAk, . . . ,
n+1∑
k=1

w(n+1)kAk

)
,

(4.2) β∗ω(A) =

(
(
n+1∑
k=1

w1kA−1
k )−1, . . . , (

n+1∑
k=1

w(n+1)kA−1
k )−1

)
.

It is not difficult to see that there exist positive definite matrices X∗ and Y ∗

such that

lim
r→∞

βr
ω(A) = (X∗, . . . , X∗) and lim

r→∞
(β∗ω)r(A) = (Y ∗, . . . , Y ∗).

Indeed, the map β has the linear representation
A1

A2

...
An+1

 7→


0 w12 w13 · · · w1(n+1)

w21 0 w23 · · · w2(n+1)

...
...

...
. . .

...
w(n+1)1 w(n+1)2 w(n+1)3 · · · 0




A1

A2

...
An+1


where wij = wj

1−wi
and

0 w12 w13 · · · w1(n+1)

w21 0 w23 · · · w2(n+1)

...
...

...
. . .

...
w(n+1)1 w(n+1)2 w(n+1)3 · · · 0


r

→


z1 z2 z3 · · · zn+1

z1 z2 z3 · · · zn+1

...
...

...
...

...
z1 z2 z3 · · · zn+1

 .

A stochastic matrix is said to be regular if some power has all positive entries. We
note that the obtained (n + 1)× (n + 1) matrix is a regular stochastic matrix with
an eigenvector z = (z1, z2, , . . . , zn+1)T . It is well-known (cf. Chapter 8, [9]) that
every regular stochastic matrix M has a unique probability vector z with all positive
components such that Mz = z, and the sequence {Mk} converges to a matrix S
whose columns are the fixed column vector z.
The case β∗ω follows from βω(A−1)−1 = β∗ω(A).
Define a self-map on Ωn+1;

(4.3) γω(A) =
(
A1#1−w1Gn(ω̂ 6=1;Ak 6=1), . . . , An+1#1−wn+1Gn(Ak 6=n+1)

)
where A = (A1, . . . , An+1) ∈ Ωn+1 and

Ak 6=i := (A1, . . . , Ai−1, Ai+1, . . . , An+1) ∈ Ωn.
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We consider the compositions δω and µω on Ωn+1 defined as

δω := γω ◦ βω and µω := γω ◦ β∗ω.

Theorem 4.1. For each A ∈ Ωn+1, the sequences {δr
ω}r∈N and {µr

ω}r∈N are power
convergent, i.e., there exist X∗, X∗ ∈ Ω such that

lim
r→∞

δr
ω(A) = (X∗, X∗, . . . , X∗),

lim
r→∞

µr
ω(A) = (X∗, X∗, . . . , X∗).

Proof. Let A ∈ Ωn+1. Setting γ = γω, δ = δω and

(4.4) δr(A) = (A(r)
1 , A

(r)
2 , . . . , A

(r)
n+1),

(4.5) (β ◦ δr)(A) = (X(r)
1 , X

(r)
2 , . . . , X

(r)
n+1),

we have A
(0)
i = Ai, X

(0)
i =

∑n+1
k=1 wikAk and

A
(r+1)
i = X

(r)
i #1−wi

Gn(ω̂ 6=i; (X
(r)
k )k 6=i), X

(r)
i =

n+1∑
k=1

wikA
(r)
k .

By Theorem 3.1 (i) and Lemma 2.2,

d(X(r)
i , X

(r)
j ) =d

(
n+1∑
k=1

wikA
(r)
k ,

n+1∑
l=1

wjlA
(r)
l

)

=d

(
n+1∑
k=1

wikA
(r)
k ,

n+1∑
k=1

wik

(
n+1∑
l=1

wjlA
(r)
l

))

≤max
k

d

(
wikA

(r)
k , wik

n+1∑
l=1

wjlA
(r)
l

)

=max
k

d

(
A

(r)
k ,

n+1∑
l=1

wjlA
(r)
l

)

=max
k

d

(
n+1∑
l=1

wjlA
(r)
k ,

n+1∑
l=1

wjlA
(r)
l

)
≤max

k,l
d
(
wjlA

(r)
k , wjlA

(r)
l

)
=∆(A(r)

1 , . . . , A
(r)
n+1)
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and

(4.6) ∆((X(r)
1 , . . . , X

(r)
n+1)) ≤ ∆(A(r)

1 , . . . , A
(r)
n+1)

where ∆(A1, . . . , An+1) = max1≤i,j≤n+1{d(Ai, Aj)}, the diameter of {Ai}n+1
i=1 .

By Theorem 3.1 (3),

d(A(r+1)
i , A

(r+1)
j ) =d(X(r)

i #1−wiGn(ω̂ 6=i; (X
(r)
k )k 6=i), X

(r)
j #1−wj Gn(ω̂ 6=j ; (X

(r)
l )l 6=j))

≤wiwj d(X(r)
i , X

(r)
j )

+ wi(1− wj) d(X(r)
i ,Gn(ω̂ 6=j ; (X

(r)
l )l 6=j))

+ (1− wi)wj d(Gn(ω̂ 6=i; (X
(r)
k )k 6=i), X

(r)
j )

+ (1− wi)(1− wj) d(Gn(ω̂ 6=i; (X
(r)
k )k 6=i),Gn(ω̂ 6=j ; (X

(r)
l )l 6=j).

By Proposition 3.5, we have following inequalities

d(Gn(ω̂ 6=i; (X
(r)
k )k 6=i),Gn(ω̂ 6=j ; (X

(r)
l )l 6=j))

≤
∑
k 6=i

∑
l 6=j

wk

1− wi

wl

1− wj
d(X(r)

k , X
(r)
l )

=
∑
k 6=i,l

∑
l 6=j

wk

1− wi

wl

1− wj
d(X(r)

k , X
(r)
l ) +

∑
l 6=i,j

wl

1− wi

wl

1− wj
d(X(r)

l , X
(r)
l )

≤
∑
k 6=i,l

∑
l 6=j

wk

1− wi

wl

1− wj
∆(X(r)

1 , . . . , X
(r)
n+1)

=

1−
∑
l 6=i,j

wl

1− wi

wl

1− wj

∆(X(r)
1 , . . . , X

(r)
n+1),

d(X(r)
i ,Gn(ω̂ 6=j ; (X

(r)
l )l 6=j)) ≤

∑
l 6=j

wl

1− wj
d(X(r)

i , X
(r)
l )

=
∑
l 6=i,j

wl

1− wj
d(X(r)

i , X
(r)
l ) +

wi

1− wj
d(X(r)

i , X
(r)
i )

≤
∑
l 6=i,j

wl

1− wj
∆(X(r)

1 , . . . , X
(r)
n+1)

=
(

1− wi

1− wj

)
∆(X(r)

1 , . . . , X
(r)
n+1)

and

d(Gn(ω̂ 6=i; (X
(r)
k )k 6=i), X

(r)
j ) ≤

(
1− wj

1− wi

)
∆(X(r)

1 , . . . , X
(r)
n+1).
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Therefore

d(A(r+1)
i , A

(r+1)
j )

≤
(

wiwj + wi(1− wj)
(

1− wi

1− wj

)
+ (1− wi)wj

(
1− wj

1− wi

)

+(1− wi)(1− wj)

1−
∑
l 6=i,j

wl

1− wi

wl

1− wj

∆(X(r)
1 , . . . , X

(r)
n+1)

=

(
1−

n+1∑
k=1

w2
k

)
∆(X(r)

1 , . . . , X
(r)
n+1)

≤

(
1−

n+1∑
k=1

w2
k

)
∆(A(r)

1 , . . . , A
(r)
n+1).

the last inequality follows by (4.9). Inductively, we have

d(A(r)
i , A

(r)
j ) ≤

(
1−

n+1∑
k=1

w2
k

)
∆(A(r−1)

1 , . . . , A
(r−1)
n+1 )(4.7)

≤ · · · ≤

(
1−

n+1∑
k=1

w2
k

)r

∆(A(0)
1 , . . . , A

(0)
n+1).(4.8)

By Lemma 2.2,

d(A(r)
i , X

(r)
j ) =d

A
(r)
i ,
∑
k 6=j

wjkA
(r)
k

 = d

∑
k 6=j

wjkA
(r)
i ,
∑
k 6=j

wjkA
(r)
k


≤max

k 6=j

{
d
(
A

(r)
i , A

(r)
k

)} (4.7)

≤

(
1−

n+1∑
k=1

w2
k

)r

∆(A)

and therefore

d(A(r)
i , A

(r+1)
i ) = d(A(r)

i , X
(r)
i #1−wi

Gn(ω̂ 6=i; (X
(r)
k )k 6=i))

≤ wid(A(r)
i , X

(r)
i ) + (1− wi) d(A(r)

i , g((X(r)
k )k 6=i))

≤ wid(A(r)
i , X

(r)
i ) +

∑
k 6=i

wkd(A(r)
i , X

(r)
k )

≤ wi

(
1−

n+1∑
k=1

w2
k

)r

∆(A) +
∑
k 6=i

wk

(
1−

n+1∑
k=1

w2
k

)r

∆(A)

=

(
1−

n+1∑
k=1

w2
k

)r

∆(A).
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This together with (4.7) shows that the sequences A
(r)
i , 1 ≤ i ≤ n + 1, have a

common limit.
The proof for µω is similar to that of δω by using the invariancy of the Thompson
metric and the weighted geometric mean under the inversion (Lemma 3.2). 2

Definition 4.2. We denote C(ω;A) (resp. C∗(ω;A)) by the common limit of the

iteration δω = γω ◦ βω (resp. µω) at A.

Remark 4.3. We consider the iterative mean algorithm (β ◦ γ)(A). From (β ◦
γ)r+1 = β ◦ (γ ◦ β)r ◦ γ = β ◦ δr ◦ γ, we have (β ◦ γ)r+1(A) = β(δr(γ(A))). Passing
to the limit as r →∞ yields

lim
r→∞

(β ◦ γ)r+1(A) = β( lim
r→∞

δr(γ(A))) = β(C(ω; γ(A)), . . . ,C(ω; γ(A)))

= (C(ω; γ(A)), . . . ,C(ω; γ(A)))

where the last equality follows from the fact that β(A,A, . . . , A) = (A,A, . . . , A) for
all A > 0.

One may have interest in finding some properties of C(ω;A) and C∗(ω;A). The
following results actually show that most of common properties of the arithmetic
mean and the weighted geometric mean Gn are preserved by C.

Theorem 4.4. The map C : ∆n+1 × Ωn+1 → Ω satisfies the following properties;
for A = (A1, A2, . . . , An+1), B = (B1, B2, . . . , Bn+1) ∈ Ωn+1, a permutation σ on
n + 1-letters, an invertible matrix M, and for 0 ≤ λ ≤ 1,

(C1) (Idempotency) C(ω;A,A, . . . , A) = A;

(C2) (Homogeneity) for any s > 0, C(ω; sA) = s C(ω;A);

(C3) (Permutation symmetry) = C(ωσ;Aσ(1), . . . , Aσ(n+1));

(C4) (Monotonicity) If Bi ≤ Ai for all i, then C(ω;B) ≤ C(ω;A);

(C5) (Continuity) C(ω; ·) is continuous;

(C6) (Congruence Invariancy) C(ω;MA1M
∗, . . . ,MAnM∗) = MC(ω;A)M∗;

(C7) (Joint Concavity) C(ω;λA + (1− λ)B) ≥ λC(ω;A) + (1− λ)C(ω;B);

(C8) (Duality) (C(ω;A−1))−1 = C∗(ω;A);

For regular stochastic matrices

R1 =


w1 w2 w3 · · · wn+1

w1 w2 w3 · · · wn+1

...
...

...
. . .

...
w1 w2 w3 · · · wn+1

 ,
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R2 =


0 w2

1−w1

w3
1−w1

· · · wn+1
1−w1

w1
1−w2

0 w3
1−w2

· · · wn+1
1−w2

...
...

...
. . .

...
w1

1−wn+1

w2
1−wn+1

w3
1−wn+1

· · · 0

 .

and an eigenvector z = (z1, . . . , zn+1)T of the regular stochastic matrix (R1R2)T

corresponding to the eigenvalue 1, we have

(C9) (Determinantal inequality) detC(ω;A) ≤
∏n+1

i=1 (detAi)zi ;

(C10) (ACH mean inequalities)(
n+1∑
k=1

zkA−1
k

)−1

≤ C∗(ω; A) ≤ C(ω; A) ≤
n+1∑
k=1

zkAk

Proof. Let A = (A1, . . . , An+1), B = (B1, . . . , Bn+1) ∈ Ωn+1. Set γ = γω, δ = δω

and

δr
ω(A) =(A(r)

1 , . . . , A
(r)
n+1), δr

ω(B) = (B(r)
1 , . . . , B

(r)
n+1)

(βω ◦ δr
ω)(A) =(X(r)

1 , . . . , X
(r)
n+1), (βω ◦ δr

ω)(B) = (Y (r)
1 , . . . , Y

(r)
n+1).

We consider the partial order on Ωn+1; B ≤ A if and only if Bi ≤ Ai, i =
1, . . . , n + 1. One may see that βω and γω are monotone functions by the mono-
tonicity of Gn and two-variable weighted geometric means ((P4) and Lemma 3.2).
In particular, δω = γω ◦ βω is monotone.
(C1) It follows from βω(A, . . . , A) = γω(A, . . . , A) = (A, . . . , A).
(C2) It follows from βω(sA) = sβω(A) and γω(sA) = sγω(A).
(C3) Let σ be a permutation on (n+1)-letters. Put ωσ = (wσ(1), wσ(2), . . . , wσ(n+1)).
We consider the sequences {B(r)

i }∞r=0 which determine the ωσ−weighted Carlson
mean Gn(ωσ;Aσ). By definition, B

(0)
i = Bi = Aσ(i) = A

(0)
σ(i) for all i. Suppose

that B
(r)
i = A

(r)
σ(i) for all i. Then Y

(r)
i =

∑
k 6=i wσ(k)B

(r)
k =

∑
k 6=i wσ(k)A

(r)
σ(k) =∑

k 6=σ(i) wkA
(r)
k = X

(r)
σ(i) for all i. By the permutation invariancy of Gn,

B
(r+1)
i = Y

(r)
i #1−wσ(i)Gn((̂ωσ)6=i; (Y

(r)
k )k 6=i)

= X
(r)
σ(i)#1−wσ(i)Gn((̂ωσ)6=i;X

(r)
σ(1), . . . , X

(r)
σ(i−1), X

(r)
σ(i+1), . . . X

(r)
σ(n+1))

= X
(r)
σ(i)#1−wσ(i)Gn(ω̂ 6=σ(i);X

(r)
1 , . . . , X

(r)
σ(i)−1, X

(r)
σ(i)+1, . . . X

(r)
n+1)

= X
(r)
σ(i)#1−wσ(i)Gn(ω̂ 6=σ(i); (X

(r)
k )k 6=σ(i)) = A

(r+1)
σ(i) .

By definition of C(ω;A) and C(ωσ;Aσ), we have

C(ω;Aσ(1), Aσ(2), . . . , Aσ(n+1)) = lim
r→∞

B
(r)
i = lim

r→∞
A

(r)
σ(i) = C(ω;A).
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(C4) Let Bi > 0 with Bi ≤ Ai for all i = 1, . . . , n + 1. Then βω(B) ≤ βω(A) and
γω(B) ≤ γω(A) and hence δω(B) = (γω ◦ βω)(B) = γω(βω(B)) ≤ γω(βω(A)) =
(γω ◦ βω)(A) = δω(A). Since ≤ is closed in Ω and δr

ω(B) ≤ δr
ω(A), we conclude that

C(ω;B) ≤ C(ω;A).
(C5) By Lemma 2.2,

d(X(r)
i , Y

(r)
i ) =d

∑
k 6=i

wk

1− wi
A

(r)
k ,
∑
k 6=i

wk

1− wi
B

(r)
k


≤max

k 6=i
d(

wk

1− wi
A

(r)
k ,

wk

1− wi
B

(r)
k ) = max

k 6=i
d(A(r)

k , B
(r)
k )

≤max
j

d(A(r)
j , B

(r)
j )

for all 1 ≤ i ≤ n + 1. By (3.1) and by (P11),

d(A(r+1)
i ,B

(r+1)
i )

=d
(
X

(r)
i #1−wi

Gn(ω̂ 6=i; (X
(r)
k )k 6=i), Y

(r)
i #1−wi

Gn(ω̂ 6=i; (Y
(r)
k )k 6=i)

)
≤wid(X(r)

i , Y
(r)
i ) + (1− wi)d

(
Gn(ω̂ 6=i; (X

(r)
k )k 6=i),Gn(ω̂ 6=i; (Y

(r)
k )k 6=i)

)
≤wid(X(r)

i , Y
(r)
i ) + (1− wi)

∑
k 6=i

wk

1− wi
d(X(r)

k , Y
(r)
k )

=
n+1∑
k=1

wkd(X(r)
k , Y

(r)
k )

≤max
j

d(A(r)
j , B

(r)
j )

and therefore

d(A(r)
i , B

(r)
i ) ≤ max

j
d(A(r−1)

j , B
(r−1)
j ) ≤ · · · ≤ max

j
d(A(0)

j , B
(0)
j ) = max

j
d(Aj , Bj).

Passing to the limit as r →∞ yields d(C(ω;A),C(ω;B)) ≤ maxj d(Aj , Bj).
(C6) It follows from βω(MAM∗) = Mβω(A)M∗ and γω(MAM∗) = Mγω(A)M∗

where MAM∗ = (MA1M
∗, . . . ,MAn+1M

∗).
(C7) Let {C(r)

i }∞r=0 (resp. {Z(r)
i }∞r=0) be defined in the same fashion as {A(r)

i }∞r=0

(resp. {X(r)
i }∞r=0), but starting from Ci = (1− λ)Ai + λBi.

We shall show that C
(r)
i ≥ (1−λ)A(r)

i +λB
(r)
i for all r and i. From A

(0)
i = Ai, B

(0)
i =

Bi, C
(0)
i = Ci, it holds true for r = 0. Suppose that C

(r)
i ≥ (1− λ)A(r)

i + λB
(r)
i for
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all i = 1, 2, . . . , n + 1. Then

Z
(r)
i =

∑
k 6=i

wkC
(r)
k

≥
∑
k 6=i

wk((1− λ)A(r)
k + λB

(r)
k )

=(1− λ)
∑
k 6=i

wkA
(r)
k + λ

∑
k 6=i

wkB
(r)
k

=(1− λ)X(r)
i + λY

(r)
i

for all i = 1, 2, . . . , n+1. By the monotonicity and concavity of Gn ((P4),(P7)) and
two-variable weighted geometric means (Lemma 3.2),

C
(r+1)
i =Z

(r)
i #1−wi

Gn(ω̂ 6=i; (Z
(r)
k )k 6=i)

≥
(
(1− λ)X(r)

i + λY
(r)
i

)
#1−wiGn(ω̂ 6=i; ((1− λ)X(r)

k + λY
(r)
k )k 6=i)

≥
(
(1− λ)X(r)

i + λY
(r)
i

)
#1−wi(

(1− λ)Gn(ω̂ 6=i; (X
(r)
k )k 6=i) + λGn(ω̂ 6=i; (Y

(r)
k )k 6=i)

)
≥(1− λ)

(
X

(r)
i #1−wiGn(ω̂ 6=i; (X

(r)
k )k 6=i)

)
+ λ

(
Y

(r)
i #1−w1Gn(ω̂ 6=i; (Y

(r)
k )k 6=i)

)
=(1− λ)A(r+1)

i + λB
(r+1)
i .

Passing to the limit as r →∞ yields

C(ω; (1−λ)A+λB) = lim
r→∞

C
(r)
i ≥ lim

r→∞
((1−λ)A(r+1)

i +λB
(r+1)
i ) = (1−λ)C(ω;A)+λC(ω;B).

(C8) It follows from βω(A−1)−1 = β∗ω(A) and γω(A−1)−1 = γω(A) (Lemma 3.2
(v)) where A−1 = (A−1

1 , . . . , A−1
n+1).

(C9) By the determinant identity of Gn (P9) and two-variable weighted geometric
means (Lemma 3.2),

detA
(r+1)
i =det

(
X

(r)
i #1−wi

Gn(ω̂ 6=i; (X
(r)
k )k 6=i)

)
=(detX

(r)
i )wi

(
detGn(ω̂ 6=i; (X

(r)
k )k 6=i)

)1−wi

=(detX
(r)
i )wi

∏
k 6=i

(detX
(r)
k )

wk
1−wi

1−wi

=
n+1∏
k=1

(detX
(r)
k )wk
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and

det X
(r)
i = det

∑
k 6=i

wk

1− wi
A

(r)
i

 ≥
∏
k 6=i

detA
wk

1−wi
i

where the inequality follows by Corollary 7.6.9 of [9] for n = 2 and by an appropriate
symmetrization method for n > 2.

Setting a(r) = (a(r)
1 , . . . , a

(r)
n+1) and x(r) = (x(r)

1 , . . . , x
(r)
n+1) where a

(r)
i = log detA

(r)
i

and x
(r)
i = log detX

(r)
i , respectively. Then we have

a
(r+1)
i =

n+1∑
k=1

wkx
(r)
k and x

(r)
i ≥

∑
k 6=i

wk

1− wi
ak

and these relations can be rewritten by using the regular stochastic matrices R1

and R2 as
a(r+1) = R1x(r) and x(r) ≥ R2a(r).

Since every row of R1 is nonnegative probability vector,

a(r+1) ≥ R1R2a(r)

and hence, inductively, we have

a(r) ≥ (R1R2)a(r−1) ≥ · · · ≥ (R1R2)ra(0).

From the facts that every component of a(r) converges to log detC(ω;A) and the
sequence {(R1R2)r} converges to a matrix S whose rows are the fixed row z =
(z1, . . . , zn+1), we obtain

detC(ω;A) ≥
n+1∏
i=1

(detAi)zi .

(C10) From the arithmetic-harmonic mean inequality, we have β∗ω(A) ≤ βω(A)
and hence by the monotonicity of γω, µω(A) = γω(β∗ω(A)) ≤ γω(βω(A)) = δω(A).
By monotonicity of δω and by induction, µr

ω(A) ≤ δr
ω(A) for all r and therefore

C∗(ω; A) ≤ C(ω; A).
We consider a self-map on Ωn+1 defined by µ(A) =

(∑n+1
k=1 wkAk, . . . ,

∑n+1
k=1 wkAk

)
It is not difficult to see that limr→∞(µ ◦ β)r(A) = (X, . . . ,X) and X =

∑n+1
i=1 ziAi

by using its linear representation

A 7→ (R1R2)A

and the corresponding matrix (R1R2) is transpose of a regular stochastic matrix
with an eigenvector z = (z1, z2, . . . , zn) of the eigenvalue 1.
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We will show by induction that δr(A) ≤ (µ◦β)r(A) for all positive integers r, which
implies that C(ω; A) ≤ X =

∑n+1
i=1 ziAi by passing to the limit as r → ∞. By the

arithmetic-geometric mean inequality (Lemma 3.2) and (P10),

Ai#1−wi
Gn(ω̂ 6=i; (Ak)k 6=i) ≤wiAi + (1− wi)Gn(ω̂ 6=i; (Ak)k 6=i)

≤wiAi + (1− wi)
∑
k 6=i

wk

1− wi
Ak

=
n+1∑
k=1

wkAk

for all i and therefore γ(A) ≤ µ(A). Replacing A to β(A) yields δ(A) = (γ ◦β)(A) =
γ(β(A)) ≤ (µ◦β)(A). Suppose that δr(A) ≤ (µ◦β)r(A). Then by the monotonicity
of δ, δr+1(A) = δ(δr(A)) ≤ δ((µ ◦ β)r(A)) ≤ (µ ◦ β)((µ ◦ β)r(A)) = (µ ◦ β)r+1(A).

The inequality
(∑n+1

k=1 zkA−1
k

)−1

≤ C∗(ω; A) follows by the preceding one and the
duality (C8).
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