KYUNGPOOK Math. J. 53(2013), 479-495 http://dx.doi.org/10.5666/KMJ.2013.53.3.479

Weighted Carlson Mean of Positive Definite Matrices

Hosoo Lee

Department of Mathematics, Louisiana State University, Baton Rouge, LA70803, USA

e-mail: hosoolee@lsu.edu

ABSTRACT. Taking the weighted geometric mean [11] on the cone of positive definite matrix, we propose an iterative mean algorithm involving weighted arithmetic and geometric means of n-positive definite matrices which is a weighted version of Carlson mean presented by Lee and Lim [13]. We show that each sequence of the weighted Carlson iterative mean algorithm has a common limit and the common limit of satisfies weighted multidimensional versions of all properties like permutation symmetry, concavity, monotonicity, homogeneity, congruence invariancy, duality, mean inequalities.

1. Introduction

For positive real numbers a and b, the sequences $\{a_n\}$ and $\{b_n\}$ defined by

$$a_0 = a, \ b_0 = b, \ a_{n+1} = \frac{1}{2}(a_n + b_n), \ b_{n+1} = \sqrt{a_{n+1}b_n}$$

converge to a common limit. This is called Borchardt's algorithm [5]. In a generalization of Borchardt's algorithm with a suitable incomplete elliptic integral representation and with "permutation symmetry," Carlson [6] has found a 3-dimensional iterative mean algorithm involving arithmetic and geometric means of positive reals. For positive reals $a_0 = a, b_0 = b$ and $c_0 = c$, the three sequences defined by

$$a_{n+1} = \left(\frac{a_n + b_n}{2} \frac{a_n + c_n}{2}\right)^{\frac{1}{2}},$$

$$b_{n+1} = \left(\frac{b_n + c_n}{2} \frac{a_n + b_n}{2}\right)^{\frac{1}{2}},$$

$$c_{n+1} = \left(\frac{a_n + c_n}{2} \frac{b_n + c_n}{2}\right)^{\frac{1}{2}}$$

^{*} Corresponding Author.

Received June 27,2013; accepted August 01, 2013.

²⁰¹⁰ Mathematics Subject Classification: 65F30, 15A48, 47A64, 20B35.

Key words and phrases: Positive definite matrix, matrix geometric mean, iterative mean algorithm, weighted symmetrization procedure.

approach to a common limit. This satisfies the permutation symmetry and includes Borchardt's algorithm (when b = c) and the common limit has a symmetric integral representation. A key observation in the Carlson algorithm is that it is a composition of two symmetrization procedures: $(a_{n+1}, b_{n+1}, c_{n+1}) = \delta(a_n, b_n, c_n)$ where $\delta = \gamma \circ \beta$ and

$$\beta(a,b,c) = \frac{1}{2}(b+c,a+c,a+b), \quad \gamma(a,b,c) = (\sqrt{bc},\sqrt{ac},\sqrt{ab})$$

The geometric mean of two positive definite matrices A and B is defined by $A\#B = A^{1/2}(A^{-1/2}BA^{-1/2})^{1/2}A^{1/2}$ and is regarded as a unique positive definite solution of the Riccati equation $XA^{-1}X = B$ [12]. In the Riemannian manifold of positive definite matrices equipped with the Riemannian metric (it coincides with the Hessian metric of the logarithmic barrier functional) $ds = ||A^{-1/2}dAA^{-1/2}||_2 = (\operatorname{tr}(A^{-1}dA)^2)^{1/2}$ ([10, 2, 3, 12]), A#B is the unique metric midpoint of A and B for the Riemannian metric distance satisfying the symmetry A#B = B#A.

q It has been a long-standing problem to extend the two-variable geometric mean of positive definite matrices to *n*-variables, $n \geq 3$, and a variety of attempts may be found in the literature. Two recent approaches have been given by Ando-Li-Mathias [1] and Bini-Meini-Poloni [4] via "symmetrization methods" and induction. From these successful extensions of geometric means of *n*-positive definite matrices, Lee and Lim [13] have generalized Carlson's algorithm from the case that variables vary over 3-dimensinal positive real numbers to the case that variables vary over multivariable positive definite matrices preserving permutation symmetry.

In [11], the authors have constructed a weighted geometric mean $\mathfrak{G}_n(\omega; A_1, \ldots, A_n)$ where ω varies over *n*-dimensional positive probability vectors via weighted version of Bini-Meini-Poloni symmetrization procedure and induction, satisfying the weighted version of ten properties of ALM geometric mean.

The main purpose of this paper is to propose weighted Carlson means based on a weighted version of the generalized permutation symmetrization procedure in [13]. For a positive probability vector $\omega = (w_1, \ldots, w_n)$ and an *n*-tuple of positive definite matrices $A = (A_1, \ldots, A_n)$, our symmetrization method is given by

$$(A_1^{(0)}, \dots, A_n^{(0)}) = (A_1, \dots, A_n),$$

$$(A_1^{(r+1)}, \dots, A_n^{(r+1)}) = \delta_{\omega}(A_1^{(r)}, \dots, A_n^{(r)}),$$

where $\delta_{\omega} = \gamma_{\omega} \circ \beta_{\omega}$, β_{ω} the weighted Ando-Li-Mathias symmetrization procedure of arithmetic mean and γ_{ω} is the weighted Bini-Meini-Poloni symmetrization procedure of geometric mean. We show that the sequences $\{A_i^{(r)}\}_{r=0}^{\infty}$, $i = 1, \ldots, n$, converge to a common limit, yielding a weighted Carlson mean $\mathfrak{C}_n(\omega; A)$. In Section 4, we present all properties of the weighted Carlson mean of positive definite matrices.

2. The Convex Cone of Positive Definite Matrices

Let $\mathcal{M}(m)$ be the space of $m \times m$ complex matrices equipped with the operator norm $|| \cdot ||$, $\mathcal{H}(m)$ the space of $m \times m$ complex Hermitian matrices, and $\Omega = \Omega(m)$ the convex cone of positive definite Hermitian matrices. The general linear group $\mathrm{GL}(m, C)$ acts on $\Omega(m)$ transitively via congruence transformations $\Gamma_M(X) = MXM^*$. For $X, Y \in \mathcal{H}(m)$, we write that $X \leq Y$ if Y - X is positive semidefinite, and X < Y if Y - X is positive definite (positive semidefinite and invertible). Each positive semidefinite matrix A has a unique positive semidefinite square root, denoted by $A^{1/2}$. For $A \in \mathcal{H}(m)$, $\lambda_j(A)$ are the eigenvalues of A in non-increasing order: $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_m(A)$. We note that the operator norm of a Hermitian matrix A coincides with its spectral norm $||A|| = \max\{|\lambda_j(A)| : 1 \leq j \leq m\}$. The Thompson metric given by

(2.1)
$$d(A,B) = \max\{\log M(B/A), \log M(A/B)\}$$

where $M(B/A) = \inf\{\alpha > 0 : B \le \alpha A\} = \lambda_1(A^{-1/2}BA^{-1/2})$ is a complete metric on the open convex cone $\Omega = \Omega(m)$. For $0 < A \le B$, we denote $[A, B] = \{X > 0 : A \le X \le B\}$.

Lemma 2.1. Let $0 < A \le B$. If $X, Y \in [A, B]$ then $d(X, Y) \le d(A, B)$.

Lemma 2.2. The Thompson metric on $\Omega(m)$ satisfies

$$d\left(\sum_{i=1}^{n} A_i, \sum_{i=1}^{n} B_i\right) \le \max\{d(A_i, B_i)\}_{i=1}^{n}$$

for any $A_i, B_i \in \Omega(m), 1 \le i \le n$.

The following additive contraction theorem will play a key role for our purpose.

Proposition 2.3. [[14]] Let A be a $l \times l$ positive semidefinite matrix. Then

$$d(A + X, A + Y) \le \frac{\alpha}{\alpha + \beta} d(X, Y), \quad X, Y \in \Omega(m)$$

where $\alpha = \max\{\lambda_1(X), \lambda_1(Y)\}\$ and $\beta = \lambda_l(A)$.

3. Weighted Geometric Means of Positive Definite Matrices

The curve $t \mapsto A \#_t B := A^{1/2} (A^{-1/2} B A^{-1/2})^t A^{1/2}$ is a minimal geodesic line between A and B and its geodesic middle $A \# B := A \#_{1/2} B$ is known as the geometric mean of A and B.

Theorem 3.1.[[2]] For $A, B, C \in \Omega$ and $M \in GL(m, C)$,

- (1) $d(A,B) = d(A^{-1}, B^{-1}) = d(MAM^*, MBM^*);$
- (2) $d(A \# B, A) = d(A \# B, B) = \frac{1}{2} d(A, B);$
- (3) for all $s, t \in [0, 1]$, $d(A \#_t B, A \#_s B) = |s t| d(A, B)$ and (3.1) $d(A \#_t B, C \#_t D) \le (1 - t) d(A, C) + t d(B, D).$

The non-positive curvature property (3.1) for the Thompson metric is appeared in [8] even for positive definite operators on a Hilbert space.

The following properties for the weighted geometric mean $A \#_t B$ are well-known.

Lemma 3.2. Let $A, B, C, D \in \Omega$ and let $t \in [0, 1]$. Then

- (i) $A \#_t B = A^{1-t} B^t$ if AB = BA;
- (ii) $(aA)\#_t(bB) = a^{1-t}b^t(A\#_tB)$ for a, b > 0;
- (iii) (Löwner-Heinz inequality) $A\#_t B \leq C \#_t D$ if $A \leq C$ and $B \leq D$;
- (iv) $M(A\#_tB)M^* = (MAM^*)\#_t(MBM^*)$ for non-singular M;
- (v) $A \#_t B = B \#_{1-t} A, (A \#_t B)^{-1} = A^{-1} \#_t B^{-1};$
- (vi) $(\lambda A + (1-\lambda)B) #_t (\lambda C + (1-\lambda)D) \ge \lambda (A #_t C) + (1-\lambda)(B #_t D)$ for $\lambda \in [0,1]$;
- (vii) $\det(A \#_t B) = \det(A)^{1-t} \det(B)^t$;
- (viii) $((1-t)A^{-1} + tB^{-1})^{-1} \le A \#_t B \le (1-t)A + tB.$

:

 $A \#_t B$ as a two-variable weighted mean, denoted by $\mathfrak{G}_2(1-t,t;A,B)$, the authors of [11] have constructed for each n > 2 a weighted geometric mean $\mathfrak{G}_n(\omega;A_1,\ldots,A_n)$, where $\omega = (w_1,\ldots,w_n)$ varies over *n*-dimensional positive probability vectors via weighted version of Bini-Meini-Poloni symmetrization procedure [4]. Let (w_1,w_2,w_3) be a positive probability vector and let A_1, A_2, A_3 be positive definite matrices. Starting with $(A_1^{(0)}, A_2^{(0)}, A_3^{(0)}) = (A_1, A_2, A_3)$ define

$$\begin{pmatrix} A_1^{(1)}, A_2^{(1)}, A_3^{(1)} \end{pmatrix} = \begin{pmatrix} A_1 \#_{1-w_1} (A_2 \#_{\frac{w_3}{1-w_1}} A_3), \\ A_2 \#_{1-w_2} (A_1 \#_{\frac{w_3}{1-w_2}} A_3), \\ A_3 \#_{1-w_3} (A_1 \#_{\frac{w_2}{1-w_3}} A_2) \end{pmatrix},$$

$$\begin{split} \left(A_1^{(r)}, A_2^{(r)}, A_3^{(r)}\right) &= \left(A_1^{(r-1)} \#_{1-w_1} (A_2^{(r-1)} \#_{\frac{w_3}{1-w_1}} A_3^{(r-1)}), \\ A_2^{(r-1)} \#_{1-w_2} (A_1^{(r-1)} \#_{\frac{w_3}{1-w_2}} A_3^{(r-1)}), \\ A_3^{(r-1)} \#_{1-w_3} (A_1^{(r-1)} \#_{\frac{w_2}{1-w_3}} A_2^{(r-1)})) \end{split}$$

It is shown that the sequences $\{A_i^{(r)}\}_{r=0}^{\infty}, i = 1, 2, 3$, converge to a common limit, yielding geometric means of 3-positive definite matrices $\mathfrak{G}_3(w_1, w_2, w_3; A_1, A_2, A_3)$. Inductively, for *n*-dimensional positive probability vector $\omega = (w_1, w_2, \ldots, w_n)$, the weighted symmetrization procedure of *n*-positive definite matrices is defined by

$$\gamma_{\omega}(A) = (A_1 \#_{1-w_1} \mathfrak{G}_{n-1}(\hat{\omega}_{\neq 1}; A_{k\neq 1}), \dots, A_n \#_{1-w_n} \mathfrak{G}_{n-1}(\hat{\omega}_{\neq n}; A_{k\neq n}))$$

where $\hat{\omega}_{\neq i} = \frac{1}{1-w_i} (w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_n)$ is (n-1)-dimensional positive probability vector and $A_{k\neq i} = (A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_n)$ of $A = (A_1, \dots, A_n)$. Then each component of the iteration $\gamma_{\omega}^r(A) = (A_1^{(r)}, \dots, A_n^{(r)})$ approaches to a common limit, yielding *n*-dimensional weighted geometric mean $\mathfrak{G}_n(\omega; A)$.

The weighted geometric means of n-positive definite matrices satisfy the following properties.

Theorem 3.3. Let $A = (A_1, A_2, \ldots, A_n), B = (B_1, B_2, \ldots, B_n) \in \Omega^n$ and let $\omega = (w_1, w_2, \ldots, w_n)$ be a positive probability vector.

- (P1) $\mathfrak{G}_n(\omega; A_1, \ldots, A_n) = A_1^{w_1} \cdots A_n^{w_n}$ for commuting A_i 's.
- (P2) (Joint homogeneity)

$$\mathfrak{G}_n(\omega; a_1A_1, \dots, a_nA_n) = a_1^{w_1} \cdots a_n^{w_n} \mathfrak{G}_n(\omega; A_1, \dots, A_n).$$

(P3) (Permutation invariance) For any permutation σ ,

 $\mathfrak{G}_n(\omega_\sigma; A_{\sigma(1)}, \dots, A_{\sigma(n)}) = \mathfrak{G}_n(\omega; A_1, \dots, A_n).$

(P4) (Monotonicity) If $B_i \leq A_i$ for all $1 \leq i \leq n$, then

$$\mathfrak{G}_n(\omega; B_1, \dots, B_n) \leq \mathfrak{G}_n(\omega; A_1, \dots, A_n).$$

- (P5) (Continuity) The map $\mathfrak{G}_n(\omega; \cdot)$ is continuous.
- (P6) (Congruence invariance) For any invertible matrix M,

$$\mathfrak{G}_n(\omega; MA_1M^*, \dots, MA_nM^*) = M\mathfrak{G}_n(\omega; A_1, \dots, A_n)M^*.$$

(P7) (Joint Concavity) For $0 \le \lambda \le 1$,

$$\mathfrak{G}_{n}(\omega;\lambda A_{1}+(1-\lambda)B_{1},\ldots,\lambda A_{n}+(1-\lambda)B_{n})$$

$$\geq\lambda\mathfrak{G}_{n}(\omega;A_{1},\ldots,A_{n})+(1-\lambda)\mathfrak{G}_{n}(\omega;B_{1},\ldots,B_{n}).$$

- (P8) (Self-duality) $\mathfrak{G}_n(\omega; A_1^{-1}, \dots, A_n^{-1}) = \mathfrak{G}_n(\omega; A_1, \dots, A_n)^{-1}.$
- (P9) (Determinantal identity) det($\mathfrak{G}_n(\omega; A_1, \ldots, A_n)$) = $\prod_{i=1}^n (\det A_i)^{\omega_i}$.

1

(P10) (Arithmetic-geometric-harmonic mean inequality)

$$\left(\sum_{i=1}^n w_i A_i^{-1}\right)^{-1} \leq \mathfrak{G}_n(\omega; A_1 \dots, A_n) \leq \sum_{i=1}^n w_i A_i.$$

We call a mean of *n*-variables satisfying these properties a weighted geometric mean. We note that for $\omega = (1/n, \ldots, 1/n)$ the geometric means obtained by Ando-Li-Mathias [1] and by Bini-Meini-Poloni [4] satisfy (P1)-(P10).

Remark 3.4. In [11], the authors obtained a stronger version of (P5) for the Thompson metric;

(P11) $d(\mathfrak{G}_n(\omega; A_1, \dots, A_n), \mathfrak{G}_n(\omega; B_1, \dots, B_n)) \leq \sum_{i=1}^n w_i d(A_i, B_i).$

Proposition 3.5. Let $\omega = (w_1, \ldots, w_n)$ and $\nu = (v_1, \ldots, v_n)$ be positive probability vectors. Then

(3.2)
$$d(\mathfrak{G}_n(\omega; A_1, \dots, A_n), \mathfrak{G}_n(\nu; B_1, \dots, B_n)) \leq \sum_{i,j=1}^n w_i v_j d(A_i, B_j).$$

Proof. By (P1) and (P11), we have

$$d(\mathfrak{G}_{n}(\omega; A_{1}, \dots, A_{n}), \mathfrak{G}_{n}(\nu; B_{1}, \dots, B_{n}))$$

$$=d(\mathfrak{G}_{n}(\omega; A_{1}, \dots, A_{n}), \mathfrak{G}_{n}(\omega; \mathfrak{G}_{n}(\nu; B_{1}, \dots, B_{n}), \dots, \mathfrak{G}_{n}(\nu; B_{1}, \dots, B_{n})))$$

$$\leq \sum_{i=1}^{n} w_{i}d(A_{i}, \mathfrak{G}_{n}(\nu; B_{1}, \dots, B_{n})))$$

$$=\sum_{i=1}^{n} w_{i}d(\mathfrak{G}_{n}(\nu; A_{i}, \dots, A_{i}), \mathfrak{G}_{n}(\nu; B_{1}, \dots, B_{n})))$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}v_{j}d(A_{i}, B_{j})).$$

4. Higher Order Weighted Carlson's Algorithm

Let $\Delta_n = \{(w_1, \ldots, w_n) \in (0, 1)^n : \sum_{i=1}^n w_i = 1\}$ be the set of $n(n \ge 2)$ dimensional positive probability vectors. For $\omega = (w_1, \ldots, w_n) \in \Delta_n$, we denote

$$\begin{aligned}
\omega_{\neq j} &= (w_1, \dots, w_{j-1}, w_{j+1}, \dots, w_n) \\
\omega_{\neq i,j} &= (w_1, \dots, w_{i-1}, w_{i+1}, \dots, w_{j-1}, w_{j+1}, \dots, w_n) \quad (i < j) \\
\hat{\omega}_{\neq j} &= \frac{1}{1 - w_j} \omega_{\neq j} \in \Delta_{n-1}, \ (n \ge 3)
\end{aligned}$$

484

and $w_{jk} = \begin{cases} \frac{w_k}{1-w_j}, & \text{if } j \neq k \\ 0, & \text{if } j = k. \end{cases}$ Then we have $\hat{\omega}_{\neq j} = (\omega_{j1}, \dots, \omega_{j(j-1)}, \omega_{j(j+1)}, \dots, \omega_{jn}).$ For $A = (A_1, \dots, A_{n+1}) \in \Omega^{n+1}$ and $\omega = (w_1, \dots, w_{n+1}) \in \Delta_{n+1}$, we consider the symmetrization procedure of arithmetic and harmonic means

(4.1)
$$\beta_{\omega}(A) = \left(\sum_{k=1}^{n+1} w_{1k}A_k, \dots, \sum_{k=1}^{n+1} w_{(n+1)k}A_k\right),$$

(4.2)
$$\beta_{\omega}^{*}(A) = \left((\sum_{k=1}^{n+1} w_{1k} A_{k}^{-1})^{-1}, \dots, (\sum_{k=1}^{n+1} w_{(n+1)k} A_{k}^{-1})^{-1} \right).$$

It is not difficult to see that there exist positive definite matrices X^* and Y^* such that

$$\lim_{r \to \infty} \beta_{\omega}^r(A) = (X^*, \dots, X^*) \text{ and } \lim_{r \to \infty} (\beta_{\omega}^*)^r(A) = (Y^*, \dots, Y^*).$$

Indeed, the map β has the linear representation

$$\begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_{n+1} \end{bmatrix} \mapsto \begin{bmatrix} 0 & w_{12} & w_{13} & \cdots & w_{1(n+1)} \\ w_{21} & 0 & w_{23} & \cdots & w_{2(n+1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_{(n+1)1} & w_{(n+1)2} & w_{(n+1)3} & \cdots & 0 \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_{n+1} \end{bmatrix}$$

where $w_{ij} = \frac{w_j}{1-w_i}$ and

0	w_{12}	w_{13}	•••	$w_{1(n+1)}$		z_1	z_2	z_3	• • •	z_{n+1}	
w_{21}	0	w_{23}	•••	$w_{2(n+1)}$		z_1	z_2	z_3	• • •	z_{n+1}	
÷	•	•	·	:	\rightarrow	:	÷	÷	÷	:	•
$w_{(n+1)1}$	$w_{(n+1)2}$	$w_{(n+1)3}$		0		z_1	z_2	z_3		z_{n+1}	

A stochastic matrix is said to be *regular* if some power has all positive entries. We note that the obtained $(n+1) \times (n+1)$ matrix is a regular stochastic matrix with an eigenvector $z = (z_1, z_2, \dots, z_{n+1})^T$. It is well-known (cf. Chapter 8, [9]) that every regular stochastic matrix M has a unique probability vector z with all positive components such that Mz = z, and the sequence $\{M^k\}$ converges to a matrix S whose columns are the fixed column vector z. The case β_{ω}^* follows from $\beta_{\omega}(A^{-1})^{-1} = \beta_{\omega}^*(A)$. Define a self-map on Ω^{n+1} ;

(4.3)
$$\gamma_{\omega}(A) = \left(A_1 \#_{1-w_1} \mathfrak{G}_n(\hat{\omega}_{\neq 1}; A_{k\neq 1}), \dots, A_{n+1} \#_{1-w_{n+1}} \mathfrak{G}_n(A_{k\neq n+1})\right)$$

where $A = (A_1, \ldots, A_{n+1}) \in \Omega^{n+1}$ and

$$A_{k\neq i} := (A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_{n+1}) \in \Omega^n.$$

We consider the compositions δ_{ω} and μ_{ω} on Ω^{n+1} defined as

$$\delta_{\omega} := \gamma_{\omega} \circ \beta_{\omega} \quad \text{and} \quad \mu_{\omega} := \gamma_{\omega} \circ \beta_{\omega}^*.$$

Theorem 4.1. For each $A \in \Omega^{n+1}$, the sequences $\{\delta_{\omega}^r\}_{r \in N}$ and $\{\mu_{\omega}^r\}_{r \in N}$ are power convergent, i.e., there exist $X^*, X_* \in \Omega$ such that

$$\lim_{r \to \infty} \delta^r_{\omega}(A) = (X^*, X^*, \dots, X^*),$$
$$\lim_{r \to \infty} \mu^r_{\omega}(A) = (X_*, X_*, \dots, X_*).$$

Proof. Let $A \in \Omega^{n+1}$. Setting $\gamma = \gamma_{\omega}, \delta = \delta_{\omega}$ and

(4.4)
$$\delta^{r}(A) = (A_{1}^{(r)}, A_{2}^{(r)}, \dots, A_{n+1}^{(r)}),$$

(4.5)
$$(\beta \circ \delta^r)(A) = (X_1^{(r)}, X_2^{(r)}, \dots, X_{n+1}^{(r)}),$$

we have $A_i^{(0)} = A_i, X_i^{(0)} = \sum_{k=1}^{n+1} w_{ik} A_k$ and

$$A_i^{(r+1)} = X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), \quad X_i^{(r)} = \sum_{k=1}^{n+1} w_{ik} A_k^{(r)}.$$

By Theorem 3.1 (i) and Lemma 2.2,

$$\begin{split} d(X_i^{(r)}, X_j^{(r)}) =& d\left(\sum_{k=1}^{n+1} w_{ik} A_k^{(r)}, \sum_{l=1}^{n+1} w_{jl} A_l^{(r)}\right) \\ =& d\left(\sum_{k=1}^{n+1} w_{ik} A_k^{(r)}, \sum_{k=1}^{n+1} w_{ik} \left(\sum_{l=1}^{n+1} w_{jl} A_l^{(r)}\right)\right) \right) \\ \leq& \max_k d\left(w_{ik} A_k^{(r)}, w_{ik} \sum_{l=1}^{n+1} w_{jl} A_l^{(r)}\right) \\ =& \max_k d\left(A_k^{(r)}, \sum_{l=1}^{n+1} w_{jl} A_l^{(r)}\right) \\ =& \max_k d\left(\sum_{l=1}^{n+1} w_{jl} A_k^{(r)}, \sum_{l=1}^{n+1} w_{jl} A_l^{(r)}\right) \\ \leq& \max_{k,l} d\left(w_{jl} A_k^{(r)}, w_{jl} A_l^{(r)}\right) \\ =& \Delta(A_1^{(r)}, \dots, A_{n+1}^{(r)}) \end{split}$$

and

(4.6)
$$\Delta((X_1^{(r)}, \dots, X_{n+1}^{(r)})) \le \Delta(A_1^{(r)}, \dots, A_{n+1}^{(r)})$$

where $\Delta(A_1, \dots, A_{n+1}) = \max_{1 \le i,j \le n+1} \{ d(A_i, A_j) \}$, the diameter of $\{A_i\}_{i=1}^{n+1}$. By Theorem 3.1 (3),

$$\begin{aligned} d(A_i^{(r+1)}, A_j^{(r+1)}) = & d(X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), X_j^{(r)} \#_{1-w_j} \mathfrak{G}_n(\hat{\omega}_{\neq j}; (X_l^{(r)})_{l\neq j})) \\ \leq & w_i w_j \ d(X_i^{(r)}, X_j^{(r)}) \\ & + w_i(1-w_j) \ d(X_i^{(r)}, \mathfrak{G}_n(\hat{\omega}_{\neq j}; (X_l^{(r)})_{l\neq j})) \\ & + (1-w_i) w_j \ d(\mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), X_j^{(r)}) \\ & + (1-w_i)(1-w_j) \ d(\mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), \mathfrak{G}_n(\hat{\omega}_{\neq j}; (X_l^{(r)})_{l\neq j}). \end{aligned}$$

By Proposition 3.5, we have following inequalities

$$\begin{split} d(\mathfrak{G}_{n}(\hat{\omega}_{\neq i};(X_{k}^{(r)})_{k\neq i}),\mathfrak{G}_{n}(\hat{\omega}_{\neq j};(X_{l}^{(r)})_{l\neq j})) \\ &\leq \sum_{k\neq i} \sum_{l\neq j} \frac{w_{k}}{1-w_{i}} \frac{w_{l}}{1-w_{j}} d(X_{k}^{(r)},X_{l}^{(r)}) \\ &= \sum_{k\neq i,l} \sum_{l\neq j} \frac{w_{k}}{1-w_{i}} \frac{w_{l}}{1-w_{j}} d(X_{k}^{(r)},X_{l}^{(r)}) + \sum_{l\neq i,j} \frac{w_{l}}{1-w_{i}} \frac{w_{l}}{1-w_{j}} d(X_{l}^{(r)},X_{l}^{(r)}) \\ &\leq \sum_{k\neq i,l} \sum_{l\neq j} \frac{w_{k}}{1-w_{i}} \frac{w_{l}}{1-w_{j}} \Delta(X_{1}^{(r)},\ldots,X_{n+1}^{(r)}) \\ &= \left(1-\sum_{l\neq i,j} \frac{w_{l}}{1-w_{i}} \frac{w_{l}}{1-w_{j}}\right) \Delta(X_{1}^{(r)},\ldots,X_{n+1}^{(r)}), \end{split}$$

$$\begin{split} d(X_i^{(r)}, \mathfrak{G}_n(\hat{\omega}_{\neq j}; (X_l^{(r)})_{l \neq j})) &\leq \sum_{l \neq j} \frac{w_l}{1 - w_j} d(X_i^{(r)}, X_l^{(r)}) \\ &= \sum_{l \neq i, j} \frac{w_l}{1 - w_j} d(X_i^{(r)}, X_l^{(r)}) + \frac{w_i}{1 - w_j} d(X_i^{(r)}, X_i^{(r)}) \\ &\leq \sum_{l \neq i, j} \frac{w_l}{1 - w_j} \Delta(X_1^{(r)}, \dots, X_{n+1}^{(r)}) \\ &= \left(1 - \frac{w_i}{1 - w_j}\right) \Delta(X_1^{(r)}, \dots, X_{n+1}^{(r)}) \end{split}$$

 $\quad \text{and} \quad$

$$d(\mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), X_j^{(r)}) \le \left(1 - \frac{w_j}{1 - w_i}\right) \Delta(X_1^{(r)}, \dots, X_{n+1}^{(r)}).$$

Therefore

$$\begin{aligned} d(A_i^{(r+1)}, A_j^{(r+1)}) \\ &\leq \left(w_i w_j + w_i (1 - w_j) \left(1 - \frac{w_i}{1 - w_j} \right) + (1 - w_i) w_j \left(1 - \frac{w_j}{1 - w_i} \right) \right. \\ &\quad + (1 - w_i) (1 - w_j) \left(1 - \sum_{l \neq i, j} \frac{w_l}{1 - w_i} \frac{w_l}{1 - w_j} \right) \right) \Delta(X_1^{(r)}, \dots, X_{n+1}^{(r)}) \\ &= \left(1 - \sum_{k=1}^{n+1} w_k^2 \right) \Delta(X_1^{(r)}, \dots, X_{n+1}^{(r)}) \\ &\leq \left(1 - \sum_{k=1}^{n+1} w_k^2 \right) \Delta(A_1^{(r)}, \dots, A_{n+1}^{(r)}). \end{aligned}$$

the last inequality follows by (4.9). Inductively, we have

(4.7)
$$d(A_i^{(r)}, A_j^{(r)}) \le \left(1 - \sum_{k=1}^{n+1} w_k^2\right) \Delta(A_1^{(r-1)}, \dots, A_{n+1}^{(r-1)})$$
$$\le \dots \le \left(1 - \sum_{k=1}^{n+1} w_k^2\right)^r \Delta(A_1^{(0)}, \dots, A_{n+1}^{(0)}).$$

By Lemma 2.2,

$$d(A_i^{(r)}, X_j^{(r)}) = d\left(A_i^{(r)}, \sum_{k \neq j} w_{jk} A_k^{(r)}\right) = d\left(\sum_{k \neq j} w_{jk} A_i^{(r)}, \sum_{k \neq j} w_{jk} A_k^{(r)}\right)$$
$$\leq \max_{k \neq j} \left\{ d\left(A_i^{(r)}, A_k^{(r)}\right) \right\} \stackrel{(4.7)}{\leq} \left(1 - \sum_{k=1}^{n+1} w_k^2\right)^r \Delta(A)$$

and therefore

$$\begin{split} d(A_i^{(r)}, A_i^{(r+1)}) &= d(A_i^{(r)}, X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i})) \\ &\leq w_i d(A_i^{(r)}, X_i^{(r)}) + (1 - w_i) \ d(A_i^{(r)}, g((X_k^{(r)})_{k\neq i})) \\ &\leq w_i d(A_i^{(r)}, X_i^{(r)}) + \sum_{k\neq i} w_k d(A_i^{(r)}, X_k^{(r)}) \\ &\leq w_i \left(1 - \sum_{k=1}^{n+1} w_k^2\right)^r \Delta(A) + \sum_{k\neq i} w_k \left(1 - \sum_{k=1}^{n+1} w_k^2\right)^r \Delta(A) \\ &= \left(1 - \sum_{k=1}^{n+1} w_k^2\right)^r \Delta(A). \end{split}$$

This together with (4.7) shows that the sequences $A_i^{(r)}$, $1 \leq i \leq n+1$, have a common limit.

The proof for μ_{ω} is similar to that of δ_{ω} by using the invariancy of the Thompson metric and the weighted geometric mean under the inversion (Lemma 3.2). **Definition 4.2.** We denote $\mathfrak{C}(\omega; A)$ (resp. $\mathfrak{C}^*(\omega; A)$) by the common limit of the

iteration $\delta_{\omega} = \gamma_{\omega} \circ \beta_{\omega}$ (resp. μ_{ω}) at A.

Remark 4.3. We consider the iterative mean algorithm $(\beta \circ \gamma)(A)$. From $(\beta \circ \gamma)^{r+1} = \beta \circ (\gamma \circ \beta)^r \circ \gamma = \beta \circ \delta^r \circ \gamma$, we have $(\beta \circ \gamma)^{r+1}(A) = \beta(\delta^r(\gamma(A)))$. Passing to the limit as $r \to \infty$ yields

$$\lim_{r \to \infty} (\beta \circ \gamma)^{r+1}(A) = \beta(\lim_{r \to \infty} \delta^r(\gamma(A))) = \beta(\mathfrak{C}(\omega; \gamma(A)), \dots, \mathfrak{C}(\omega; \gamma(A)))$$
$$= (\mathfrak{C}(\omega; \gamma(A)), \dots, \mathfrak{C}(\omega; \gamma(A)))$$

where the last equality follows from the fact that $\beta(A, A, ..., A) = (A, A, ..., A)$ for all A > 0.

One may have interest in finding some properties of $\mathfrak{C}(\omega; A)$ and $\mathfrak{C}^*(\omega; A)$. The following results actually show that most of common properties of the arithmetic mean and the weighted geometric mean \mathfrak{G}_n are preserved by \mathfrak{C} .

Theorem 4.4. The map $\mathfrak{C} : \Delta_{n+1} \times \Omega^{n+1} \to \Omega$ satisfies the following properties; for $A = (A_1, A_2, \ldots, A_{n+1}), B = (B_1, B_2, \ldots, B_{n+1}) \in \Omega^{n+1}$, a permutation σ on n+1-letters, an invertible matrix M, and for $0 \leq \lambda \leq 1$,

- (C1) (Idempotency) $\mathfrak{C}(\omega; A, A, \dots, A) = A;$
- (C2) (Homogeneity) for any s > 0, $\mathfrak{C}(\omega; sA) = s \mathfrak{C}(\omega; A)$;
- (C3) (*Permutation symmetry*) = $\mathfrak{C}(\omega_{\sigma}; A_{\sigma(1)}, \ldots, A_{\sigma(n+1)});$
- (C4) (Monotonicity) If $B_i \leq A_i$ for all *i*, then $\mathfrak{C}(\omega; B) \leq \mathfrak{C}(\omega; A)$;
- (C5) (Continuity) $\mathfrak{C}(\omega; \cdot)$ is continuous;
- (C6) (Congruence Invariancy) $\mathfrak{C}(\omega; MA_1M^*, \dots, MA_nM^*) = M\mathfrak{C}(\omega; A)M^*;$
- (C7) (Joint Concavity) $\mathfrak{C}(\omega; \lambda A + (1-\lambda)B) \ge \lambda \mathfrak{C}(\omega; A) + (1-\lambda)\mathfrak{C}(\omega; B);$
- (C8) (Duality) $(\mathfrak{C}(\omega; A^{-1}))^{-1} = \mathfrak{C}^*(\omega; A);$

For regular stochastic matrices

$$R_1 = \begin{bmatrix} w_1 & w_2 & w_3 & \cdots & w_{n+1} \\ w_1 & w_2 & w_3 & \cdots & w_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_1 & w_2 & w_3 & \cdots & w_{n+1} \end{bmatrix},$$

and an eigenvector $z = (z_1, \ldots, z_{n+1})^T$ of the regular stochastic matrix $(R_1R_2)^T$ corresponding to the eigenvalue 1, we have

- (C9) (Determinantal inequality) det $\mathfrak{C}(\omega; A) \leq \prod_{i=1}^{n+1} (\det A_i)^{z_i};$
- (C10) (ACH mean inequalities)

$$\left(\sum_{k=1}^{n+1} z_k A_k^{-1}\right)^{-1} \le \mathfrak{C}^*(\omega; \mathbb{A}) \le \mathfrak{C}(\omega; \mathbb{A}) \le \sum_{k=1}^{n+1} z_k A_k$$

Proof. Let $A = (A_1, \ldots, A_{n+1}), B = (B_1, \ldots, B_{n+1}) \in \Omega^{n+1}$. Set $\gamma = \gamma_{\omega}, \delta = \delta_{\omega}$ and

$$\delta_{\omega}^{r}(A) = (A_{1}^{(r)}, \dots, A_{n+1}^{(r)}), \quad \delta_{\omega}^{r}(B) = (B_{1}^{(r)}, \dots, B_{n+1}^{(r)})$$
$$(\beta_{\omega} \circ \delta_{\omega}^{r})(A) = (X_{1}^{(r)}, \dots, X_{n+1}^{(r)}), \quad (\beta_{\omega} \circ \delta_{\omega}^{r})(B) = (Y_{1}^{(r)}, \dots, Y_{n+1}^{(r)})$$

We consider the partial order on Ω^{n+1} ; $B \leq A$ if and only if $B_i \leq A_i$, $i = 1, \ldots, n+1$. One may see that β_{ω} and γ_{ω} are monotone functions by the monotonicity of \mathfrak{G}_n and two-variable weighted geometric means ((P4) and Lemma 3.2). In particular, $\delta_{\omega} = \gamma_{\omega} \circ \beta_{\omega}$ is monotone.

(C1) It follows from $\beta_{\omega}(A, \ldots, A) = \gamma_{\omega}(A, \ldots, A) = (A, \ldots, A).$

(C2) It follows from $\beta_{\omega}(sA) = s\beta_{\omega}(A)$ and $\gamma_{\omega}(sA) = s\gamma_{\omega}(A)$.

(C3) Let σ be a permutation on (n+1)-letters. Put $\omega_{\sigma} = (w_{\sigma(1)}, w_{\sigma(2)}, \dots, w_{\sigma(n+1)})$. We consider the sequences $\{B_i^{(r)}\}_{r=0}^{\infty}$ which determine the ω_{σ} -weighted Carlson mean $\mathfrak{G}_n(\omega_{\sigma}; A_{\sigma})$. By definition, $B_i^{(0)} = B_i = A_{\sigma(i)} = A_{\sigma(i)}^{(0)}$ for all *i*. Suppose that $B_i^{(r)} = A_{\sigma(i)}^{(r)}$ for all *i*. Then $Y_i^{(r)} = \sum_{k \neq i} w_{\sigma(k)} B_k^{(r)} = \sum_{k \neq i} w_{\sigma(k)} A_{\sigma(k)}^{(r)} = \sum_{k \neq \sigma(i)} w_k A_k^{(r)} = X_{\sigma(i)}^{(r)}$ for all *i*. By the permutation invariancy of \mathfrak{G}_n ,

$$\begin{split} B_{i}^{(r+1)} &= Y_{i}^{(r)} \#_{1-w_{\sigma(i)}} \mathfrak{G}_{n}(\widehat{(\omega_{\sigma})}_{\neq i}; (Y_{k}^{(r)})_{k\neq i}) \\ &= X_{\sigma(i)}^{(r)} \#_{1-w_{\sigma(i)}} \mathfrak{G}_{n}(\widehat{(\omega_{\sigma})}_{\neq i}; X_{\sigma(1)}^{(r)}, \dots, X_{\sigma(i-1)}^{(r)}, X_{\sigma(i+1)}^{(r)}, \dots, X_{\sigma(n+1)}^{(r)}) \\ &= X_{\sigma(i)}^{(r)} \#_{1-w_{\sigma(i)}} \mathfrak{G}_{n}(\widehat{\omega}_{\neq\sigma(i)}; X_{1}^{(r)}, \dots, X_{\sigma(i)-1}^{(r)}, X_{\sigma(i)+1}^{(r)}, \dots, X_{n+1}^{(r)}) \\ &= X_{\sigma(i)}^{(r)} \#_{1-w_{\sigma(i)}} \mathfrak{G}_{n}(\widehat{\omega}_{\neq\sigma(i)}; (X_{k}^{(r)})_{k\neq\sigma(i)}) = A_{\sigma(i)}^{(r+1)}. \end{split}$$

By definition of $\mathfrak{C}(\omega; A)$ and $\mathfrak{C}(\omega_{\sigma}; A_{\sigma})$, we have

$$\mathfrak{C}(\omega; A_{\sigma(1)}, A_{\sigma(2)}, \dots, A_{\sigma(n+1)}) = \lim_{r \to \infty} B_i^{(r)} = \lim_{r \to \infty} A_{\sigma(i)}^{(r)} = \mathfrak{C}(\omega; A).$$

(C4) Let $B_i > 0$ with $B_i \leq A_i$ for all i = 1, ..., n + 1. Then $\beta_{\omega}(B) \leq \beta_{\omega}(A)$ and $\gamma_{\omega}(B) \leq \gamma_{\omega}(A)$ and hence $\delta_{\omega}(B) = (\gamma_{\omega} \circ \beta_{\omega})(B) = \gamma_{\omega}(\beta_{\omega}(B)) \leq \gamma_{\omega}(\beta_{\omega}(A)) = (\gamma_{\omega} \circ \beta_{\omega})(A) = \delta_{\omega}(A)$. Since \leq is closed in Ω and $\delta^r_{\omega}(B) \leq \delta^r_{\omega}(A)$, we conclude that $\mathfrak{C}(\omega; B) \leq \mathfrak{C}(\omega; A)$. (C5) By Lemma 2.2,

 $d(X_i^{(r)}, Y_i^{(r)}) = d\left(\sum_{k \neq i} \frac{w_k}{1 - w_i} A_k^{(r)}, \sum_{k \neq i} \frac{w_k}{1 - w_i} B_k^{(r)}\right)$ $\leq \max_{k \neq i} d(\frac{w_k}{1 - w_i} A_k^{(r)}, \frac{w_k}{1 - w_i} B_k^{(r)}) = \max_{k \neq i} d(A_k^{(r)}, B_k^{(r)})$ $\leq \max_i d(A_j^{(r)}, B_j^{(r)})$

for all $1 \leq i \leq n+1$. By (3.1) and by (P11),

$$\begin{split} d(A_i^{(r+1)}, B_i^{(r+1)}) &= d\left(X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), Y_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (Y_k^{(r)})_{k\neq i})\right) \\ &\leq w_i d(X_i^{(r)}, Y_i^{(r)}) + (1 - w_i) d\left(\mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}), \mathfrak{G}_n(\hat{\omega}_{\neq i}; (Y_k^{(r)})_{k\neq i})\right) \\ &\leq w_i d(X_i^{(r)}, Y_i^{(r)}) + (1 - w_i) \sum_{k\neq i} \frac{w_k}{1 - w_i} d(X_k^{(r)}, Y_k^{(r)}) \\ &= \sum_{k=1}^{n+1} w_k d(X_k^{(r)}, Y_k^{(r)}) \\ &\leq \max_i d(A_j^{(r)}, B_j^{(r)}) \end{split}$$

and therefore

$$d(A_i^{(r)}, B_i^{(r)}) \le \max_j d(A_j^{(r-1)}, B_j^{(r-1)}) \le \dots \le \max_j d(A_j^{(0)}, B_j^{(0)}) = \max_j d(A_j, B_j).$$

Passing to the limit as $r \to \infty$ yields $d(\mathfrak{C}(\omega; A), \mathfrak{C}(\omega; B)) \leq \max_j d(A_j, B_j)$. (C6) It follows from $\beta_{\omega}(MAM^*) = M\beta_{\omega}(A)M^*$ and $\gamma_{\omega}(MAM^*) = M\gamma_{\omega}(A)M^*$ where $MAM^* = (MA_1M^*, \dots, MA_{n+1}M^*)$. (C7) Let $\{C_i^{(r)}\}_{r=0}^{\infty}$ (resp. $\{Z_i^{(r)}\}_{r=0}^{\infty}$) be defined in the same fashion as $\{A_i^{(r)}\}_{r=0}^{\infty}$ (resp. $\{X_i^{(r)}\}_{r=0}^{\infty}$), but starting from $C_i = (1 - \lambda)A_i + \lambda B_i$. We shall show that $C_i^{(r)} \geq (1 - \lambda)A_i^{(r)} + \lambda B_i^{(r)}$ for all r and i. From $A_i^{(0)} = A_i, B_i^{(0)} = B_i, C_i^{(0)} = C_i$, it holds true for r = 0. Suppose that $C_i^{(r)} \geq (1 - \lambda)A_i^{(r)} + \lambda B_i^{(r)}$ for all i = 1, 2, ..., n + 1. Then

$$Z_{i}^{(r)} = \sum_{k \neq i} w_{k} C_{k}^{(r)}$$

$$\geq \sum_{k \neq i} w_{k} ((1 - \lambda) A_{k}^{(r)} + \lambda B_{k}^{(r)})$$

$$= (1 - \lambda) \sum_{k \neq i} w_{k} A_{k}^{(r)} + \lambda \sum_{k \neq i} w_{k} B_{k}^{(r)}$$

$$= (1 - \lambda) X_{i}^{(r)} + \lambda Y_{i}^{(r)}$$

for all i = 1, 2, ..., n+1. By the monotonicity and concavity of \mathfrak{G}_n ((P4),(P7)) and two-variable weighted geometric means (Lemma 3.2),

$$\begin{split} C_i^{(r+1)} = & Z_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (Z_k^{(r)})_{k\neq i}) \\ & \geq \left((1-\lambda) X_i^{(r)} + \lambda Y_i^{(r)} \right) \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; ((1-\lambda) X_k^{(r)} + \lambda Y_k^{(r)})_{k\neq i}) \\ & \geq \left((1-\lambda) X_i^{(r)} + \lambda Y_i^{(r)} \right) \#_{1-w_i} \\ & \left((1-\lambda) \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}) + \lambda \mathfrak{G}_n(\hat{\omega}_{\neq i}; (Y_k^{(r)})_{k\neq i}) \right) \\ & \geq (1-\lambda) \left(X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}) \right) \\ & + \lambda \left(Y_i^{(r)} \#_{1-w_1} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (Y_k^{(r)})_{k\neq i}) \right) \\ & = (1-\lambda) A_i^{(r+1)} + \lambda B_i^{(r+1)}. \end{split}$$

Passing to the limit as $r \to \infty$ yields

$$\mathfrak{C}(\omega; (1-\lambda)A + \lambda B) = \lim_{r \to \infty} C_i^{(r)} \ge \lim_{r \to \infty} ((1-\lambda)A_i^{(r+1)} + \lambda B_i^{(r+1)}) = (1-\lambda)\mathfrak{C}(\omega; A) + \lambda \mathfrak{C}(\omega; B).$$
(C8) It follows from $\beta_{\omega}(A^{-1})^{-1} = \beta_{\omega}^*(A)$ and $\gamma_{\omega}(A^{-1})^{-1} = \gamma_{\omega}(A)$ (Lemma 3.2)

(co) It follows from $\beta_{\omega}(A^{-1}) = \beta_{\omega}(A)$ and $\beta_{\omega}(A^{-1}) = \beta_{\omega}(A)$ (hermit 3.2 (v)) where $A^{-1} = (A_1^{-1}, \dots, A_{n+1}^{-1})$. (C9) By the determinant identity of \mathfrak{G}_n (P9) and two-variable weighted geometric

(C9) By the determinant identity of \mathfrak{G}_n (P9) and two-variable weighted geometric means (Lemma 3.2),

$$\det A_i^{(r+1)} = \det \left(X_i^{(r)} \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}) \right)$$

= $(\det X_i^{(r)})^{w_i} \left(\det \mathfrak{G}_n(\hat{\omega}_{\neq i}; (X_k^{(r)})_{k\neq i}) \right)^{1-w_i}$
= $(\det X_i^{(r)})^{w_i} \left(\prod_{k\neq i} (\det X_k^{(r)})^{\frac{w_k}{1-w_i}} \right)^{1-w_i}$
= $\prod_{k=1}^{n+1} (\det X_k^{(r)})^{w_k}$

and

$$\det X_i^{(r)} = \det \left(\sum_{k \neq i} \frac{w_k}{1 - w_i} A_i^{(r)} \right) \ge \prod_{k \neq i} \det A_i^{\frac{w_k}{1 - w_i}}$$

where the inequality follows by Corollary 7.6.9 of [9] for n = 2 and by an appropriate symmetrization method for n > 2.

Setting $\mathbf{a}^{(r)} = (a_1^{(r)}, \dots, a_{n+1}^{(r)})$ and $\mathbf{x}^{(r)} = (x_1^{(r)}, \dots, x_{n+1}^{(r)})$ where $a_i^{(r)} = \log \det A_i^{(r)}$ and $x_i^{(r)} = \log \det X_i^{(r)}$, respectively. Then we have

$$a_i^{(r+1)} = \sum_{k=1}^{n+1} w_k x_k^{(r)}$$
 and $x_i^{(r)} \ge \sum_{k \neq i} \frac{w_k}{1 - w_i} a_k$

and these relations can be rewritten by using the regular stochastic matrices R_1 and R_2 as

$$\mathbf{a}^{(r+1)} = R_1 \mathbf{x}^{(r)}$$
 and $\mathbf{x}^{(r)} \ge R_2 \mathbf{a}^{(r)}$.

Since every row of R_1 is nonnegative probability vector,

$$\mathbf{a}^{(r+1)} \ge R_1 R_2 \mathbf{a}^{(r)}$$

and hence, inductively, we have

$$\mathbf{a}^{(r)} \ge (R_1 R_2) \mathbf{a}^{(r-1)} \ge \cdots \ge (R_1 R_2)^r \mathbf{a}^{(0)}.$$

From the facts that every component of $\mathbf{a}^{(r)}$ converges to log det $\mathfrak{C}(\omega; A)$ and the sequence $\{(R_1R_2)^r\}$ converges to a matrix S whose rows are the fixed row $z = (z_1, \ldots, z_{n+1})$, we obtain

$$\det \mathfrak{C}(\omega; A) \ge \prod_{i=1}^{n+1} (\det A_i)^{z_i}.$$

(C10) From the arithmetic-harmonic mean inequality, we have $\beta_{\omega}^{*}(\mathbb{A}) \leq \beta_{\omega}(\mathbb{A})$ and hence by the monotonicity of γ_{ω} , $\mu_{\omega}(A) = \gamma_{\omega}(\beta_{\omega}^{*}(A)) \leq \gamma_{\omega}(\beta_{\omega}(A)) = \delta_{\omega}(A)$. By monotonicity of δ_{ω} and by induction, $\mu_{\omega}^{r}(A) \leq \delta_{\omega}^{r}(A)$ for all r and therefore $\mathfrak{C}^{*}(\omega; \mathbb{A}) \leq \mathfrak{C}(\omega; \mathbb{A})$.

We consider a self-map on Ω^{n+1} defined by $\mu(\mathbb{A}) = \left(\sum_{k=1}^{n+1} w_k A_k, \dots, \sum_{k=1}^{n+1} w_k A_k\right)$ It is not difficult to see that $\lim_{r\to\infty} (\mu \circ \beta)^r(\mathbb{A}) = (X, \dots, X)$ and $X = \sum_{i=1}^{n+1} z_i A_i$ by using its linear representation

$$A \mapsto (R_1 R_2) A$$

and the corresponding matrix (R_1R_2) is transpose of a regular stochastic matrix with an eigenvector $z = (z_1, z_2, \ldots, z_n)$ of the eigenvalue 1.

We will show by induction that $\delta^r(\mathbb{A}) \leq (\mu \circ \beta)^r(\mathbb{A})$ for all positive integers r, which implies that $\mathfrak{C}(\omega; \mathbb{A}) \leq X = \sum_{i=1}^{n+1} z_i A_i$ by passing to the limit as $r \to \infty$. By the arithmetic-geometric mean inequality (Lemma 3.2) and (P10),

$$\begin{aligned} A_i \#_{1-w_i} \mathfrak{G}_n(\hat{\omega}_{\neq i}; (A_k)_{k\neq i}) &\leq w_i A_i + (1-w_i) \mathfrak{G}_n(\hat{\omega}_{\neq i}; (A_k)_{k\neq i}) \\ &\leq w_i A_i + (1-w_i) \sum_{k\neq i} \frac{w_k}{1-w_i} A_k \\ &= \sum_{k=1}^{n+1} w_k A_k \end{aligned}$$

for all *i* and therefore $\gamma(\mathbb{A}) \leq \mu(\mathbb{A})$. Replacing \mathbb{A} to $\beta(\mathbb{A})$ yields $\delta(\mathbb{A}) = (\gamma \circ \beta)(A) = \gamma(\beta(A)) \leq (\mu \circ \beta)(\mathbb{A})$. Suppose that $\delta^r(\mathbb{A}) \leq (\mu \circ \beta)^r(\mathbb{A})$. Then by the monotonicity of δ , $\delta^{r+1}(\mathbb{A}) = \delta(\delta^r(\mathbb{A})) \leq \delta((\mu \circ \beta)^r(\mathbb{A})) \leq (\mu \circ \beta)((\mu \circ \beta)^r(\mathbb{A})) = (\mu \circ \beta)^{r+1}(\mathbb{A})$. The inequality $\left(\sum_{k=1}^{n+1} z_k A_k^{-1}\right)^{-1} \leq \mathfrak{C}^*(\omega; \mathbb{A})$ follows by the preceding one and the duality (C8).

References

- T. Ando, C.K. Li and R. Mathias, *Geometric means*, Linear Algebra Appl., 385(2004), 305-334.
- [2] R. Bhatia, On the exponential metric increasing property, Linear Algebra Appl. 375(2003), 211-220.
- [3] R. Bhatia, *Positive definite matrices*, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2007.
- [4] D. Bini, B. Meini and F. Poloni, An effective matrix geometric mean satisfying the Ando-Li-Mathias properties, Math. Comp., 79(2010), 437-452.
- [5] C. W. Borchardt, Sur deux algorithmes analogues á celui de la moyenne arithéticogéométrique de deux éléments, In memoriiam Dominici Chelini, Collectanea Mathematica [etc], L. Cremona, ed., U. Hoepli, Milan, 1881, 455-462.
- [6] B. C. Carlson, Hidden symmetries of special functions, SIAM Review, 12(1970), 332-346.
- [7] B. C. Carlson, Algorithms involving arithmetic and geometric means, Amer. Math. Monthly, 78(1971), 496-505.
- [8] G. Corach, H. Porta, and L. Recht, Convexity of the geodesic distance on spaces of positive operators, Illinois J. Math. 38(1994), 87-94.
- [9] R. Horn and C. Johnson, *Matrix analysis*, Cambridge University Press, Cambridge, 1985.
- [10] S. Lang, Fundamentals of differential geometry, Graduate Texts in Math., Springer, Heidelberg, 1999.
- J. D. Lawson H. Lee and Y. Lim, Weighted geometric means, Forum Mathematicum, 24(2012), 1067-1090.

- [12] J. D. Lawson and Y. Lim, The geometric mean, matrices, metrics, and more, Amer. Math. Monthly 108(2001), 797-812.
- [13] H. Lee and Y. Lim, Carlson's iterative algorithm of positive definite matrices, Linear Algebra Appl., accepted
- [14] H. Lee and Y. Lim, Invariant metrics, contractions and nonlinear matrix equations, Nonlinearity 21(2008), 857-878.