• Title/Summary/Keyword: weighted linear interpolation

Search Result 22, Processing Time 0.023 seconds

Modified Raised-Cosine Interpolation and Application to Image Processing (변형된 상승여현 보간법의 제안과 영상처리에의 응용)

  • 하영호;김원호;김수중
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.4
    • /
    • pp.453-459
    • /
    • 1988
  • A new interpolation function, named modified raised-cosine interpolation, is proposed. This function is derived from the linear combination of weighted triangular and raised-cosine functions to reduce the effect of side lobes which incur the interpolation error. Interpolation error reduces significantly for higher-order convolutional interpolation functions of linear operators, but at the expense of resolution error due to the attenuation of main lobe. However, the proposed interpolation function enables us to reduce the side lobes as well as to preserve the main lobe. To prove practicality, this function is applied in image reconstruction and enlargement.

  • PDF

Kernel Analysis of Weighted Linear Interpolation Based on Even-Odd Decomposition (짝수 홀수 분해 기반의 가중 선형 보간법을 위한 커널 분석)

  • Oh, Eun-ju;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1455-1461
    • /
    • 2018
  • This paper presents a kernel analysis of weighted linear interpolation based on even-odd decomposition (EOD). The EOD method has advantages in that it provides low-complexity and improved image quality than the CCI method. However, since the kernel of EOD has not studied before and its analysis has not been addressed yet, this paper proposes the kernel function and its analysis. The kernel function is divided into odd and even terms. And then, the kernel is accomplished by summing the two terms. The proposed kernel is adjustable by a parameter. The parameter influences efficiency in the EOD based WLI process. Also, the kernel shapes are proposed by adjusting the parameter. In addition, the discussion with respect to the parameter is given to understand the parameter. A preliminary experiment on the kernel shape is presented to understand the adjustable parameter and corresponding kernel.

Weighted Distance De-interlacing Algorithm Based on EDI and NAL (EDI와 NAL 알고리듬을 기반으로 한 거리 가중치 비월주사 방식 알고리듬)

  • Lee, Se-Young;Ku, Su-Il;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.704-711
    • /
    • 2008
  • This paper proposes a new de-interlacing method which results in efficient visual improvement. In the proposed algorithm, the distance weight was considered and the previously developed the EDI (Edge Dependent Interpolation) algorithm and the NAL (New Adaptive Linear interpolation) algorithm were used as a basis. The do-interlacing method was divided into two main parts. First, the edge direction was found by using information of closer pixels. Then, missing pixels were interpolated along with the decided edge direction. In this paper, after predicting the edge through the EDI algorithm, missing pixels were interpolated by using the weighted distance based on the NAL algorithm. Experimental results indicate that the proposed algorithm be superior to the conventional algorithms in terms of the objective and subjective criteria.

Particle Motion Interpolation Method for Mitigating the Occurrence of Unnatural Wave Breaking in Fluid Simulation (유체 시뮬레이션에서 부자연스러운 쇄파의 발생을 완화하기 위한 파티클 움직임 보간 방법)

  • Sung, Su-Kyung;Lee, Eun-Seok;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2014
  • In particle-based fluid simulation, applying sudden power to particle raise unnatural flow when wave is breaking. To solve this problem, we have used an linear interpolation technique that interpolate between fluid particle by subdividing the time interval in the previous work. Acceleration vector of the particle with increased pressure in boundary could change smoothly. However, particle looks like flow with viscosity because the number of the minimum samples to interpolate increases. We propose an weighted-interpolation technique to represent the realistic movement of fluid. it is accumulating that has added and assigned different weights to the previous acceleration vector and current one repeatedly. weighted-interpolation technique using less minium samples to flow than linear interpolation, so it can solve the problem which particle looks like flow with viscosity.

EZXover: C program to Reduce Cross-over Errors in Marine Geophysical Survey Data (지구물리탐사자료에서 교차점오차를 보정하기위한 EZXover 프로그램 개발)

  • Kang Moo-Hee;Han Hyun-Chul;Kim Kyong-O;SunWoo Don;Kim Jin-Ho;Gong Gee-Soo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.229-234
    • /
    • 2006
  • Cross-over errors (XOEs) may mislead scientists when interpreting marine geophysical data. Such risk can be reduced by correcting the data proportionally between two cross-over points (XOPs). C program is presented to determine XOPs using a quick rejection test and a straddle test, and to adjust XOEs using a weighted linear interpolation algorithm.

Modified Cubic Convolution Interpolation for Low Computational Complexity

  • Jun, Young-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1259-1262
    • /
    • 2006
  • In this paper, we propose a modified cubic convolution interpolation for the enlargement or reduction of digital images using a pixel difference value. The proposed method has a low complexity: the number of multiplier of weighted value to calculate one pixel of a scaled image has seven less than that of cubic convolution interpolation has sixteen. We use the linear function of the cubic convolution and the difference pixel value for selecting interpolation methods. The proposed method is compared with the conventional one for the computational complexity and the image quality. The simulation results show that the proposed method has less computational complexity than one of the cubic convolution interpolation.

  • PDF

Generation of 2-D Parametric Surfaces with Highly Irregular Boundaries

  • Sarkar, Subhajit;Dey, Partha Pratim
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.11-20
    • /
    • 2009
  • The conventional methods of boundary-conformed 2D surfaces generation usually yield some problems. This paper deals with two boundary-conformed 2D surface generation methods, one conventional approach, the linear Coons method, and a new method, boundary-conformed interpolation. In this new method, unidirectional 2D surface has been generated using some of the geometric properties of the given boundary curves. A method of simultaneous displacement of the interpolated curves from the opposite boundaries has been adopted. The geometric properties considered for displacements include weighted combination of angle bisector and linear displacement vectors at all the data-points of the two opposite generating curves. The algorithm has one adjustable parameter that controls the characteristics of transformation of one set of curves from its parents. This unidirectional process has been extended to bi-directional parameterization by superimposing two sets of unidirectional curves generated from both boundary pairs. Case studies show that this algorithm gives reasonably smooth transformation of the boundaries. This algorithm is more robust than the linear Coons method and capable of resolving the 2D boundary-conformed parameterization problems.

Multi-Mode Reconstruction of Subsampled Chrominance Information using Inter-Component Correlation in YCbCr Colorspace (YCbCr 컬러공간에서 구성성분간의 상관관계를 이용한 축소된 채도 정보의 다중 모드 재구성)

  • Kim, Young-Ju
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.74-82
    • /
    • 2008
  • This paper investigates chrominance reconstruction methods that reconstruct subsampled chrominance information efficiently using the correlation between luminance and chrominance components in the decompression process of compressed images, and analyzes drawbacks involved in the adaptive-weighted 2-dimensional linear interpolation among the methods, which shows higher efficiency in the view of computational complexity than other methods. To improve the drawback that the spatial frequency distribution is not considered for the decompressed image and to support the application on a low-performance system in behalf of 2-dimensional linear interpolation, this paper proposes the multi-mode reconstruction method which uses three reconstruction methods having different computational complexity from each other according to the degree of edge response of luminance component. The performance evaluation on a development platform for embedded systems showed that the proposed reconstruction method supports the similar level of image quality for decompressed images while reducing the overall computation time for chrominance reconstruction in comparison with the 2-dimensional linear interpolation.

FastXcorr : FORTRAN Program for Fast Cross-over Error Correction of Marine Geophysical Survey Data (FastXcorr : 해양지구물리탐사 자료의 빠른 교차점오차 보정을 위한 프로그램 개발)

  • Kim, Kyong-O;Kang, Moo-Hee;Gong, Gee-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.219-223
    • /
    • 2008
  • Many cross-over errors due to position errors, meter errors, observation errors, sea conditions and so on occur when marine geophysical data collected by own and other agencies are merged, and these errors can create artificial anomalies which cause an improper interpretation. Many methods have been introduced to reduce cross-over errors. However, most methods are designed to compare each point or segment data to find cross-over points, and require a long processing time. Therefore, FORTRAN program (FastXcorr) is presented to fast determine cross-over points using an overlap-sector, and to adjust cross-over errors using a weighted linear interpolation algorithm.

Real-time Calculation of Geoid Applicable to Embedded Systems (내장형 시스템에 적용 가능한 지오이드의 실시간 결정)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.374-381
    • /
    • 2020
  • In order to improve the vertical position accuracy, the advantages of GPS and barometric altimeter are combined and used, but in order to fuse the two sensors, the geoid altitude must be compensated. In this paper, we proposed a technique that can calculate geoid altitude in real time even in low-cost embedded systems applied to drones or autonomous vehicles. Since the reference EGM08 is determined by a polynomial of the 2160th order, real-time calculation is impossible in the embedded system. Therefore, by introducing a linear interpolation technique, the amount of calculation was increased, and the storage space was saved by 75% by using the integer geoid height as a grid point. The accuracy of the proposed technique was evaluated through simulation, and it was confirmed that the accuracy of the maximum error is -1.215 m even in the region where the geoid change is rapid.