• Title/Summary/Keyword: weighted least squares solution

Search Result 15, Processing Time 0.024 seconds

Development, Demonstration and Validation of the Deep Space Orbit Determination Software Using Lunar Prospector Tracking Data

  • Lee, Eunji;Kim, Youngkwang;Kim, Minsik;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.213-223
    • /
    • 2017
  • The deep space orbit determination software (DSODS) is a part of a flight dynamic subsystem (FDS) for the Korean Pathfinder Lunar Orbiter (KPLO), a lunar exploration mission expected to launch after 2018. The DSODS consists of several sub modules, of which the orbit determination (OD) module employs a weighted least squares algorithm for estimating the parameters related to the motion and the tracking system of the spacecraft, and subroutines for performance improvement and detailed analysis of the orbit solution. In this research, DSODS is demonstrated and validated at lunar orbit at an altitude of 100 km using actual Lunar Prospector tracking data. A set of a priori states are generated, and the robustness of DSODS to the a priori error is confirmed by the NASA planetary data system (PDS) orbit solutions. Furthermore, the accuracy of the orbit solutions is determined by solution comparison and overlap analysis as about tens of meters. Through these analyses, the ability of the DSODS to provide proper orbit solutions for the KPLO are proved.

A comparison on coefficient estimation methods in single index models (단일지표모형에서 계수 추정방법의 비교)

  • Choi, Young-Woong;Kang, Kee-Hoon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1171-1180
    • /
    • 2010
  • It is well known that the asymptotic convergence rates of nonparametric regression estimator gets worse as the dimension of covariates gets larger. One possible way to overcome this problem is reducing the dimension of covariates by using single index models. Two coefficient estimation methods in single index models are introduced. One is semiparametric least square estimation method, which tries to find approximate solution by using iterative computation. The other one is weighted average derivative estimation method, which is non-iterative method. Both of these methods offer the parametric convergence rate to normal distribution. However, practical comparison of these two methods has not been done yet. In this article, we compare these methods by examining the variances of estimators in various models.

A Substation-Oriented Approach to Optimal Phasor Measurement Units Placement

  • Bao, Wei;Guo, Rui-Peng;Han, Zhen-Xiang;Chen, Li-Yue;Lu, Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.18-29
    • /
    • 2015
  • State Estimation (SE) is the basis of a variety of advanced applications used in most modern power systems. An SE problem formed with enough phasor measurement units (PMUs) data is simply a linear weighted least squares problem requiring no iterations. Thus, designing a minimum-cost placement of PMUs that guarantees observability of a power system becomes a worthy challenge. This paper proposes an equivalent integer linear programming method for substation-oriented optimal PMU placement (SOOPP). The proposed method uses an exhaustive search to determine a globally optimal solution representing the best PMU placement for that particular power system. To obtain a more comprehensive model, contingencies and the limitation of the number of PMU measurement channels are considered and embodied in the model as changes to the original constraints and as additional constraints. The proposed method is examined for applicability using the IEEE 14-bus, 118-bus and 300-bus test systems. The comparison between SOOPP results and results obtained by other methods reveals the excellence of SOOPP. Furthermore, practical large-scale power systems are also successfully analyzed using SOOPP.

Development of WMLS-based Particle Simulation Method for Solving Free-Surface Flow (자유표면 유동해석을 위한 WMLS 기반 입자법 기술 개발)

  • Nam, Jung-Woo;Park, Jong-Chun;Park, Ji-In;Hwang, Sung-Chul;Heo, Jae-Kyung;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.93-101
    • /
    • 2014
  • In general, particle simulation methods such as the MPS(Moving Particle Simulation) or SPH(Smoothed Particle Hydrodynamics) methods have some serious drawbacks for pressure solutions. The pressure field shows spurious high fluctuations both temporally and spatially. It is well known that pressure fluctuation primarily occurs because of the numerical approximation of the partial differential operators. The MPS and SPH methods employ a pre-defined kernel function in the approximation of the gradient and Laplacian operators. Because this kernel function is constructed artificially, an accurate solution cannot be guaranteed, especially when the distribution of particles is irregular. In this paper, we propose a particle simulation method based on the moving least-square technique for solving the partial differential operators using a Taylor-series expansion. The developed method was applied to the hydro-static pressure and dam-broken problems to validate it.

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF