• Title/Summary/Keyword: weighted least square

Search Result 172, Processing Time 0.034 seconds

Structural design of Optimized Interval Type-2 FCM Based RBFNN : Focused on Modeling and Pattern Classifier (최적화된 Interval Type-2 FCM based RBFNN 구조 설계 : 모델링과 패턴분류기를 중심으로)

  • Kim, Eun-Hu;Song, Chan-Seok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.692-700
    • /
    • 2017
  • In this paper, we propose the structural design of Interval Type-2 FCM based RBFNN. Proposed model consists of three modules such as condition, conclusion and inference parts. In the condition part, Interval Type-2 FCM clustering which is extended from FCM clustering is used. In the conclusion part, the parameter coefficients of the consequence part are estimated through LSE(Least Square Estimation) and WLSE(Weighted Least Square Estimation). In the inference part, final model outputs are acquired by fuzzy inference method from linear combination of both polynomial and activation level obtained through Interval Type-2 FCM and acquired activation level through Interval Type-2 FCM. Additionally, The several parameters for the proposed model are identified by using differential evolution. Final model outputs obtained through benchmark data are shown and also compared with other already studied models' performance. The proposed algorithm is performed by using Iris and Vehicle data for pattern classification. For the validation of regression problem modeling performance, modeling experiments are carried out by using MPG and Boston Housing data.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Regularized Modified Newton-Raphson Algorithm for Electrical Impedance Tomography Based on the Exponentially Weighted Least Square Criterion (전기 임피던스 단층촬영을 위한 지수적으로 가중된 최소자승법을 이용한 수정된 조정 Newton-Raphson 알고리즘)

  • Kim, Kyung-Youn;Kim, Bong-Seok
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.249-256
    • /
    • 2000
  • In EIT(electrical impedance tomography), the internal resistivity(or conductivity) distribution of the unknown object is estimated using the boundary voltage data induced by different current patterns using various reconstruction algorithms. In this paper, we present a regularized modified Newton-Raphson(mNR) scheme which employs additional a priori information in the cost functional as soft constraint and the weighting matrices in the cost functional are selected based on the exponentially weighted least square criterion. The computer simulation for the 32 channels synthetic data shows that the reconstruction performance of the proposed scheme is improved compared to that of the conventional regularized mNR at the expense of slightly increased computational burden.

  • PDF

Weighted Least Square-Based Magnetometer Calibration Method Robust in Roll-Pitch Limited Conditions (롤피치 제한 조건에 강인한 가중 최소자승법 기반 마그네토미터 캘리브레이션 기법)

  • Jeon, Tae-Hyeong;Lee, Jung-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.259-265
    • /
    • 2017
  • Magnetometer calibration must be performed before the use of three-axis magnetometers to ensure the accuracy of orientation estimation. Recently, one of the most popular calibration approaches is the ellipsoid fitting technique due to its high performance in calibration. To date, in fact, performances of the existing ellipsoid fitting methods have been evaluated with full range rotation data. However, in case of the calibration of magnetometers attached to vehicles, ships, and planes, it is very difficult to collect the full range rotation data since their allowable ranges in terms of roll and pitch are limited to small. This constraint may result in serious performance degradation of some ellipsoid fitting algorithms. Therefore, to be practical, this paper proposes a weighted least square-based magnetometer calibration method that is robust in roll-pitch limited conditions. Furthermore, the proposed method is a linear approach and thus is free from the well-known initial value issue in nonlinear approaches. Experimental results show the superiority of the proposed method to other ellipsoid-fitting calibration methods.

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Optimal Design Method for an Actively Shielded MRI Superconducting Magnet (능동 차폐 MRI 초전도 자석에 대한 최적 설계 방법)

  • Lee, Kwang-Ho;Cho, Yun-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.6
    • /
    • pp.421-430
    • /
    • 2000
  • This paper describes an optimal design method which is applied a weighted least square (WLS) method for Magnetic Resonance Imaging (MRI) system. An optimal design approach is presented for a homogeneity superconducting magnet with the superconducting active shield especially for a magnetic resonance imaging system. The WLS is used to obtain the optimal configurations using the least amount and minimum volume of conductor, exhibiting the smallest level of field inhomogeneity and resulting in the least level of stray field. The proposed model is used to design a multiple-shield configuration for a 1.5 T MRI magnet. The field homogeneity is required less than 5 gauss stray field contour within 4m axially and 3m radially from origin. The designed magnet with the actively magnetic shielding coil out of main coils is analyzed by FEM and theoretical analysis method, investigated the field homogeneity.

  • PDF

LEAST-SQUARE SWITCHING PROCESS FOR ACCURATE AND EFFICIENT GRADIENT ESTIMATION ON UNSTRUCTURED GRID

  • SEO, SEUNGPYO;LEE, CHANGSOO;KIM, EUNSA;YUNE, KYEOL;KIM, CHONGAM
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.1-22
    • /
    • 2020
  • An accurate and efficient gradient estimation method on unstructured grid is presented by proposing a switching process between two Least-Square methods. Diverse test cases show that the gradient estimation by Least-Square methods exhibit better characteristics compared to Green-Gauss approach. Based on the investigation, switching between the two Least-Square methods, whose merit complements each other, is pursued. The condition number of the Least-Square matrix is adopted as the switching criterion, because it shows clear correlation with the gradient error, and it can be easily calculated from the geometric information of the grid. To illustrate switching process on general grid, condition number is analyzed using stencil vectors and trigonometric relations. Then, the threshold of switching criterion is established. Finally, the capability of Switching Weighted Least-Square method is demonstrated through various two- and three-dimensional applications.

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

HDR image display combines weighted least square filtering with color appearance model

  • Piao, Meixian;Lee, Kyungjun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2016.06a
    • /
    • pp.260-263
    • /
    • 2016
  • Recently high dynamic range imaging technique is hot issue in computer graphic area. We present a progressive tone mapping algorithm, which is based on weighted least squares optimization framework. Our approach combines weighted leastsquaresfiltering with iCAM06, for showing more perceptual high dynamic range images in conventional display, while avoiding visual halo artifacts. We decompose high dynamic range image into base layer and detail layer. The base layer has large scale variation, it is obtained by using weighted least squares filtering, and then the base layer incorporates iCAM06 model. Then, adaptive compression on the base layer according to human visual system. Only the base layer reduces contrast, and preserving detail. The resultshows more perceptual color appearance and preserve fine detail, while avoiding common artifacts.

  • PDF

Estimation of structure system input force using the inverse fuzzy estimator

  • Lee, Ming-Hui
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.351-365
    • /
    • 2011
  • This study proposes an inverse estimation method for the input forces of a fixed beam structural system. The estimator includes the fuzzy Kalman Filter (FKF) technology and the fuzzy weighted recursive least square method (FWRLSM). In the estimation method, the effective estimator are accelerated and weighted by the fuzzy accelerating and weighting factors proposed based on the fuzzy logic inference system. By directly synthesizing the robust filter technology with the estimator, this study presents an efficient robust forgetting zone, which is capable of providing a reasonable trade-off between the tracking capability and the flexibility against noises. The period input of the fixed beam structure system can be effectively estimated by using this method to promote the reliability of the dynamic performance analysis. The simulation results are compared by alternating between the constant and adaptive and fuzzy weighting factors. The results demonstrate that the application of the presented method to the fixed beam structure system is successful.