• Title/Summary/Keyword: weighted fuzzy controller

Search Result 17, Processing Time 0.025 seconds

Weighted fuzzy controller composed of position type fuzzy controller and velocity type fuzzy controller (위치형퍼지제어기와 속도형퍼지제어기로 구성된 퍼지 가중치 제어기)

  • 김병수;박준열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.181-183
    • /
    • 1996
  • Generally, While position type fuzzy controller has good performance in transient period, it has uniform steady state error of response. While velocity type fuzzy controller is capable of reducing steady state error of response, it is hard to develop the performance in transient period. In order to have both good performance in transient period and ability to reduce the steady state error of response, weighting fuzzy controller, which is composed of these two fuzzy controllers, is proposed. For the decision of weight to each fuzzy controller, Weighting fuzzy set is established according to the system state variables and applied to each fuzzy controller. The proposed weighted fuzzy controller has the merits of both position type fuzzy controller and velocity type fuzzy controller simultaneously.

  • PDF

Design of a Robust Control System Using the Fuzzy-LQ Control Technique (퍼지-LQ 제어 기법을 이용한 강인한 제어시스템의 설계)

  • 최재준;소명옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.623-630
    • /
    • 2001
  • The conventional control techniques based a mathematical model are not well suited for dealing with ill-defined and uncertain system like a linear quadratic control. Recently, fuzzy control has been successfully applied to a wide variety of practical problems such as robot, water purification, automatic train operation system etc. In this paper, a design technique of robust Fuzzy-LQ controller for each subsystem is designed. Secondly , all the subsystem controllers are combined by fuzzy weighted averaging method. Finally the effectiveness of the proposed controller is verified through a series of computer simulations for an inverted pole system.

  • PDF

T-S Fuzzy Control of IPMSM using Weighted Integral Action (가중적분을 이용한 IPMSM의 T-S 퍼지 제어)

  • Hwang, Tae Hwan;Kim, Tae Kue;Park, Seung Kyu;Ahn, Ho Gyun;Yoon, Tae Sung;Kwak, Gun Pyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.105-112
    • /
    • 2014
  • This paper proposes a novel $H{\infty}$ T-S Fuzzy controller with a weighted integral action for Interior Permanent Magnet Synchronous Motor(IPMSM) which have nonlinear dynamics. The $H{\infty}$ T-S Fuzzy controller is used for the robustness of nonlinear systems and the weighted integral action is used for the tracking problem and the improvement of control performance. A T-S Fuzzy controller is designed by combining the local controllers with the overall stability, and LMI(Linear Matrix Inequality)is used to determine the gains of linear controllers. The tracking problem of IPMSM is changed into regulator problem by introducing the integral action and the weighting factor gives flexibility to a $H{\infty}$ fuzzy controller.

The Design of a Fuzzy Adaptive Controller for the Process Control (공정제어를 위한 퍼지 적응제어기의 설계)

  • Lee Bong Kuk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.31-41
    • /
    • 1993
  • In this paper, a fuzzy adaptive controller is proposed for the process with large delay time and unmodelled dynamics. The fuzzy adaptive controller consists of self tuning controller and fuzzy tuning part. The self tuning controller is designed with the continuous time GMV (generalized minimum variance) using emulator and weighted least square method. It is realized by the hybrid method. The controller has robust characteristics by adapting the inference rule in design parameters. The inference processing is tuned according to the operating point of the process having the nonlinear characteristics considering the practical application. We review the characteristics of the fuzzy adaptive controller through the simulation. The controller is applied to practical electric furnace. As a result, the fuzzy adaptive controller shows the better characteristics than the simple numeric self tuning controller and the PI controller.

  • PDF

Weighted Integral H Control of Induction Motor using T-S fuzzy (T-S 퍼지를 사용한 유도전동기의 가중적분 H 제어)

  • Kim, Min-Chan;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyong;Ahn, Ho-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1399-1408
    • /
    • 2013
  • This paper proposes a new $H_{\infty}$ T-S fuzzy controller with a novel integral control for induction motors which have nonlinear dynamics. The $H_{\infty}$ T-S fuzzy controller is used for the nonlinearity and robustness and weighted integral is used for tracking problem and control performance. A T-S Fuzzy controller is the fuzzy combination of local linear controllers considering the overall stability, and LMI(Linear Matrix Inequlity) is used for determining the gains of linear controllers. The tracking problem of an induction motor is changed into regulator problem by introducing the integral control technique with weighting factor, diminishing the conservatism of $H_{\infty}$ T-S fuzzy controller.

Design of fuzzy PID controller for based on PI and PD parallel structure

  • Lee, Chul-Heui;Kim, Kwang-Ho;Seo, Seon-Hak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.71-74
    • /
    • 1995
  • In this paper, a new PID fuzzy controller(FC) based on parallel operation of PI and PD fuzzy control is presented. First, two fuzzy rule bases are constructed by separating the linguistic control rule for PID FC into two parts : one is e-.DELTA.e part, and the other is .DELTAL.$^{2}$e-.DELTA.e part. And then two FCs employing these rule bases indivisually are synthesized and run in parallel. The incremental control input is determined by taking weighted mean of the outputs of two FCs. The proposed PID FC improves the transient response of the system and gives better performance than the conventional PI FC.

  • PDF

Design of a Container Crane Controller Using the Fuzzy Control Technique (퍼지제어 기법을 이용한 컨테이너 크레인의 제어기 설계)

  • 소명옥;유희한;박재식;남택근;최재준;이병찬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.759-766
    • /
    • 2003
  • The amount of container freight continuously has been increased. and the low efficiency of container crane causes jamming frequently in transportation and cargo handling at port. The conventional control techniques based on a mathematical model are not well suited for dealing with ill-defined and uncertain systems. Recently. Fuzzy control has been successfully applied to a wide variety of practical problems as robots. automatic train operation system. etc. In this paper. a fuzzy controller for container crane is proposed to accomplish a design of improved control system for minimizing the swing motion at destination. In this scheme a mathematical model for the system is obtained in state space form. Finally. to exhibit the tracking performance and robustness of the proposed controller. computer simulations were carried out with various references, parameter variations and disturbances.

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.

Robust Trajectory Tracking Control of a Mobile Robot Based on Weighted Integral PDC and T-S Fuzzy Disturbance Observer (하중 적분 PDC와 T-S 퍼지 외란 관측기를 이용한 이동 로봇의 강인 궤도 추적 제어)

  • Baek, Du-san;Yoon, Tae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.265-276
    • /
    • 2017
  • In this paper, a robust and more accurate trajectory tracking control method for a mobile robot is proposed using WIPDC(Weighted Integral Parallel Distributed Compensation) and T-S Fuzzy disturbance observer. WIPDC reduces the steady state error by adding weighted integral term to PDC. And, T-S Fuzzy disturbance observer makes it possible to estimate and cancel disturbances for a T-S fuzzy model system. As a result, the trajectory tracking controller based on T-S Fuzzy disturbance observer shows robust tracking performance. When the initial postures of a mobile robot and the reference trajectory are different, the initial control inputs to the mobile robot become too large to apply them practically. In this study, also, the problem is solved by designing an initial approach path using a path planning method which employs $B\acute{e}zier$ curve with acceleration limits. Performances of the proposed method are proved from the simulation results.

An Optimal Path Generation Method considering the Safe Maneuvering of UGV (무인지상차량의 안전주행을 고려한 최적경로 생성 방법)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Choe, Tok-Son;Park, Yong-Woon;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.951-957
    • /
    • 2010
  • An optimal path generation method considering the safety of UGV(Unmanned Ground Vehicle) is proposed and demonstrated through examples. Among various functions of UGV, real-time obstacle avoidance is a key issue to realize realistic scenario in FCS(Future Combat Systems). A two-dimensional narrow corridor environment is considered as a test field. For each step of UGV movement, two objectives are considered: One is to minimize the distance to the target and the other to maximize the distance to the nearest point of an obstacle. A weighted objective function is used in the optimization problem. Equality and inequality constraints are taken to secure the UGV's dynamics and safety. The weighting factors are controlled by a fuzzy controller which is constructed by a fuzzy rule set and membership functions. Simulations are performed for two cases. First the weighting factors are considered as constant values to understand the characteristics of the corresponding solutions and then as variables that are adjusted by the fuzzy controller. The results are satisfactory for realistic situations considered. The proposed optimal path generation with the fuzzy control is expected to be well applicable to real environment.