• Title/Summary/Keyword: weighted function

Search Result 749, Processing Time 0.451 seconds

A Study on Lung Cancer Segmentation Algorithm using Weighted Integration Loss on Volumetric Chest CT Image (흉부 볼륨 CT영상에서 Weighted Integration Loss을 이용한 폐암 분할 알고리즘 연구)

  • Jeong, Jin Gyo;Kim, Young Jae;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.5
    • /
    • pp.625-632
    • /
    • 2020
  • In the diagnosis of lung cancer, the tumor size is measured by the longest diameter of the tumor in the entire slice of the CT. In order to accurately estimate the size of the tumor, it is better to measure the volume, but there are some limitations in calculating the volume in the clinic. In this study, we propose an algorithm to segment lung cancer by applying a custom loss function that combines focal loss and dice loss to a U-Net model that shows high performance in segmentation problems in chest CT images. The combination of values of the various parameters in custom loss function was compared to the results of the model learned. The purposed loss function showed F1 score of 88.77%, precision of 87.31%, recall of 90.30% and average precision of 0.827 at α=0.25, γ=4, β=0.7. The performance of the proposed custom loss function showed good performance in lung cancer segmentation.

K-Means-Based Polynomial-Radial Basis Function Neural Network Using Space Search Algorithm: Design and Comparative Studies (공간 탐색 최적화 알고리즘을 이용한 K-Means 클러스터링 기반 다항식 방사형 기저 함수 신경회로망: 설계 및 비교 해석)

  • Kim, Wook-Dong;Oh, Sung-Kwun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.731-738
    • /
    • 2011
  • In this paper, we introduce an advanced architecture of K-Means clustering-based polynomial Radial Basis Function Neural Networks (p-RBFNNs) designed with the aid of SSOA (Space Search Optimization Algorithm) and develop a comprehensive design methodology supporting their construction. In order to design the optimized p-RBFNNs, a center value of each receptive field is determined by running the K-Means clustering algorithm and then the center value and the width of the corresponding receptive field are optimized through SSOA. The connections (weights) of the proposed p-RBFNNs are of functional character and are realized by considering three types of polynomials. In addition, a WLSE (Weighted Least Square Estimation) is used to estimate the coefficients of polynomials (serving as functional connections of the network) of each node from output node. Therefore, a local learning capability and an interpretability of the proposed model are improved. The proposed model is illustrated with the use of nonlinear function, NOx called Machine Learning dataset. A comparative analysis reveals that the proposed model exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literature.

STUDY OF BRÜCK CONJECTURE AND UNIQUENESS OF RATIONAL FUNCTION AND DIFFERENTIAL POLYNOMIAL OF A MEROMORPHIC FUNCTION

  • Pramanik, Dilip Chandra;Roy, Jayanta
    • Korean Journal of Mathematics
    • /
    • v.30 no.2
    • /
    • pp.249-261
    • /
    • 2022
  • Let f be a non-constant meromorphic function in the open complex plane ℂ. In this paper we prove under certain essential conditions that R(f) and P[f], rational function and differential polynomial of f respectively, share a small function of f and obtain a conclusion related to Brück conjecture. We give some examples in support to our result.

Improvement of learning concrete crack detection model by weighted loss function

  • Sohn, Jung-Mo;Kim, Do-Soo;Hwang, Hye-Bin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.15-22
    • /
    • 2020
  • In this study, we propose an improvement method that can create U-Net model which detect fine concrete cracks by applying a weighted loss function. Because cracks in concrete are a factor that threatens safety, it is important to periodically check the condition and take prompt initial measures. However, currently, the visual inspection is mainly used in which the inspector directly inspects and evaluates with naked eyes. This has limitations not only in terms of accuracy, but also in terms of cost, time and safety. Accordingly, technologies using deep learning is being researched so that minute cracks generated in concrete structures can be detected quickly and accurately. As a result of attempting crack detection using U-Net in this study, it was confirmed that it could not detect minute cracks. Accordingly, as a result of verifying the performance of the model trained by applying the suggested weighted loss function, a highly reliable value (Accuracy) of 99% or higher and a harmonic average (F1_Score) of 89% to 92% was derived. The performance of the learning improvement plan was verified through the results of accurately and clearly detecting cracks.

Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering (지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할)

  • Alamgir, Nyma;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.83-93
    • /
    • 2012
  • This paper proposes an image segmentation framework that modifies the objective function of Fuzzy C-Means (FCM) to improve the performance and computational efficiency of the conventional FCM-based image segmentation. The proposed image segmentation framework includes a locally weighted fuzzy c-means (LWFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors. Distance between a center pixel and a neighboring pixels are calculated within a window and these are basis for determining weights to indicate the importance of the memberships as well as to improve the clustering performance. We analyzed the segmentation performance of the proposed method by utilizing four eminent cluster validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), Xie-Bdni function ($V_{xb}$) and Fukuyama-Sugeno function ($V_{fs}$). Experimental results show that the proposed LWFCM outperforms other FCM algorithms (FCM, modified FCM, and spatial FCM, FCM with locally weighted information, fast generation FCM) in the cluster validity functions as well as both compactness and separation.

Weighted Estimation of Survival Curves for NBU Class Based on Censored Data

  • Lee, Sang-Bock
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.59-68
    • /
    • 1996
  • In this paper, we consider how to estimate New Better Than Used (NBU) survival curves from randomly right censored data. We propose several possible NBU estimators and study their properties. Numerical studies indicate that the proposed estimators are appropriate in practical use. Some useful examples are presented.

  • PDF

Extracting Wisconsin Breast Cancer Prediction Fuzzy Rules Using Neural Network with Weighted Fuzzy Membership Functions (가중 퍼지 소속함수 기반 신경망을 이용한 Wisconsin Breast Cancer 예측 퍼지규칙의 추출)

  • Lim Joon Shik
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.717-722
    • /
    • 2004
  • This paper presents fuzzy rules to predict diagnosis of Wisconsin breast cancer using neural network with weighted fuzzy membership functions (NNWFM). NNWFM is capable of self-adapting weighted membership functions to enhance accuracy in prediction from the given clinical training data. n set of small, medium, and large weighted triangular membership functions in a hyperbox are used for representing n set of featured input. The membership functions are randomly distributed and weighted initially, and then their positions and weights are adjusted during learning. After learning, prediction rules are extracted directly from the enhanced bounded sums of n set of weighted fuzzy membership functions. Two number of prediction rules extracted from NNWFM outperforms to the current published results in number of rules and accuracy with 99.41%.

Using weighted Support Vector Machine to address the imbalanced classes problem of Intrusion Detection System

  • Alabdallah, Alaeddin;Awad, Mohammed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.5143-5158
    • /
    • 2018
  • Improving the intrusion detection system (IDS) is a pressing need for cyber security world. With the growth of computer networks, there are constantly daily new attacks. Machine Learning (ML) is one of the most important fields which have great contribution to address the intrusion detection issues. One of these issues relates to the imbalance of the diverse classes of network traffic. Accuracy paradox is a result of training ML algorithm with imbalanced classes. Most of the previous efforts concern improving the overall accuracy of these models which is truly important. However, even they improved the total accuracy of the system; it fell in the accuracy paradox. The seriousness of the threat caused by the minor classes and the pitfalls of the previous efforts to address this issue is the motive for this work. In this paper, we consolidated stratified sampling, cost function and weighted Support Vector Machine (WSVM) method to address the accuracy paradox of ID problem. This model achieved good results of total accuracy and superior results in the small classes like the User-To-Remote and Remote-To-Local attacks using the improved version of the benchmark dataset KDDCup99 which is called NSL-KDD.