• Title/Summary/Keyword: weighted LAD estimator

Search Result 2, Processing Time 0.014 seconds

Trimmed LAD Estimators for Multidimensional Contingency Tables (분할표 분석을 위한 절사 LAD 추정량과 최적 절사율 결정)

  • Choi, Hyun-Jip
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.6
    • /
    • pp.1235-1243
    • /
    • 2010
  • This study proposes a trimmed LAD(least absolute deviation) estimators for multi-dimensional contingency tables and suggests an algorithm to estimate it. In addition, a method to determine the trimming quantity of the estimators is suggested. A Monte Carlo study shows that the propose method yields a better trimming rate and coverage rate than the previously suggest method based on the determinant of the covariance matrix.

Weighted Least Absolute Deviation Lasso Estimator

  • Jung, Kang-Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.6
    • /
    • pp.733-739
    • /
    • 2011
  • The linear absolute shrinkage and selection operator(Lasso) method improves the low prediction accuracy and poor interpretation of the ordinary least squares(OLS) estimate through the use of $L_1$ regularization on the regression coefficients. However, the Lasso is not robust to outliers, because the Lasso method minimizes the sum of squared residual errors. Even though the least absolute deviation(LAD) estimator is an alternative to the OLS estimate, it is sensitive to leverage points. We propose a robust Lasso estimator that is not sensitive to outliers, heavy-tailed errors or leverage points.