• Title/Summary/Keyword: weight sensor

Search Result 577, Processing Time 0.027 seconds

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Basic Physiological Research on the Wing Flapping of the Sweet Potato Hawkmoth Using Multimedia

  • Nakajima, Isao;Yagi, Yukako
    • Journal of Multimedia Information System
    • /
    • v.7 no.2
    • /
    • pp.189-196
    • /
    • 2020
  • We have developed a device for recording biological data by inserting three electrodes and a needle with an angular velocity sensor into the moth for the purpose of measuring the electromyogram of the flapping and the corresponding lift force. With this measurement, it is possible to evaluate the moth-physiological function of moths, and the amount of pesticides that insects are exposed to (currently LD50-based standards), especially the amount of chronic low-concentration exposure, can be reduced the dose. We measured and recorded 2-channel electromyography (EMG) and angular velocity corresponding to pitch angle (pitch-like angle) associated with wing flapping for 100 sweet potato hawkmoths (50 females and 50 males) with the animals suspended and constrained in air. Overall, the angular velocity and amplitude of EMG signals demonstrated high correlation, with a correlation coefficient of R = 0.792. In contrast, the results of analysis performed on the peak-to-peak (PP) EMG intervals, which correspond to the RR intervals of ECG signals, indicated a correlation between ΔF fluctuation and angular velocity of R = 0.379. Thus, the accuracy of the regression curve was relatively poor. Using a DC amplification circuit without capacitive coupling as the EMG amplification circuit, we confirmed that the baseline changes at the gear change point of wing flapping. The following formula gives the lift provided by the wing: angular velocity × thoracic weight - air resistance - (eddy resistance due to turbulence). In future studies, we plan to attach a micro radio transmitter to the moths to gather data on potential energy, kinetic energy, and displacement during free flight for analysis. Such physiological functional evaluations of moths may alleviate damage to insect health due to repeated exposure to multiple agrochemicals and may lead to significant changes in the toxicity standards, which are currently based on LD50 values.

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Development of 3 D.O.F parallel robot's simulator for education

  • Yoo, Jae-Myung;Kim, John-Hyeong;Park, Dong-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2290-2295
    • /
    • 2005
  • In this paper, it is developed simulator system of 3 D.O.F parallel robot for educate of expertness. This simulator system is composed of three parts ? 3 D.O.F parallel robot, controller (hardware) and software. First, basic structure of the robot is 3 active rotary actuator that small geared step motor with fixed base. An input-link is connected to this actuator, and this input-link can connect two ball joints. Thus, two couplers can be connected to the input-link as a pair. An end-plate, which is jointed by a ball joint, can be connected to the opposite side of the coupler. A sub-link is produced and installed to the internal spring, and then this sub-link is connected to the upper and bottom side of the coupler in order to prevent a certain bending or deformation of the two couplers. The robot has the maximum diameter of 230 mm, 10 kg of weight (include the table), and maximum height of 300 mm. Hardware for control of the robot is composed of computer, micro controller, pulse generator, and motor driver. The PC used in the controller sends commands to the controller, and transform signals input by the user to the coordinate value of the robot by substituting it into equations of kinematics and inverse kinematics. A controller transfer the coordinate value calculated in the PC to a pulse generator by transforming it into signals. A pulse generator analyzes commands, which include the information received from the micro controller. A motor driver transfer the pulse received from the pulse generator to a step motor, and protects against the over-load of the motor Finally, software is a learning purposed control program, which presents the principle of a robot operation and actual implementation. The benefit of this program is that easy for a novice to use. Developed robot simulator system can be practically applied to understand the principle of parallel mechanism, motors, sensor, and various other parts.

  • PDF

Deep Learning-Based Human Motion Denoising (딥 러닝 기반 휴먼 모션 디노이징)

  • Kim, Seong Uk;Im, Hyeonseung;Kim, Jongmin
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1295-1301
    • /
    • 2019
  • In this paper, we propose a novel method of denoising human motion using a bidirectional recurrent neural network (BRNN) with an attention mechanism. The corrupted motion captured from a single 3D depth sensor camera is automatically fixed in the well-established smooth motion manifold. Incorporating an attention mechanism into BRNN achieves better optimization results and higher accuracy than other deep learning frameworks because a higher weight value is selectively given to a more important input pose at a specific frame for encoding the input motion. Experimental results show that our approach effectively handles various types of motion and noise, and we believe that our method can sufficiently be used in motion capture applications as a post-processing step after capturing human motion.

Comparison of Upper and Lower Cervical Muscle Strengths Between Subjects With and Without Forward Head Posture

  • Eun, Ji-yeon;Kwon, Oh-yun;Hwang, Ui-jae;Jung, Sung-hoon;Ahn, Sun-hee
    • Physical Therapy Korea
    • /
    • v.27 no.4
    • /
    • pp.272-277
    • /
    • 2020
  • Background: Forward head posture (FHP) is common postural malalignment. FHP is described relatively extension to upper cervical and lower cervical is relatively flexion. Although several researchers mentioned the lower cervical flexion posture in FHP, most of the studies related to FHP is focused on the deep cervical flexor function. Objects: The purposes of present study is to compare the cervical strength (upper cervical extension [UCE], lower cervical extension [LCE], upper cervical flexion [UCF], lower cervical flexion [LCF]) between individuals with and without FHP. Methods: Fifty-one participants are recruited. Participants who have the craniovertebral angle (CVA) less than 48 degree were classified to the FHP group (n = 24) and the others were included in without FHP group (n = 27). The cervical strength (UCE, LCE, UCF, LCF) were measured using Smart KEMA strength sensor and the strength data was normalized by body weight. All strength measurement conducted at head and neck neutral position in sitting. Independent t-test was used to compare the cervical strength between individuals with and without FHP. Results: The mean value of CVA was greater in without FHP group than with FHP group (p < 0.000). The strength value of UCF (p < 0.002) and LCE (p < 0.001) was significant less in FHP group than without FHP group. But no significant differences were seen in the LCF and UCE strength between two groups. Conclusion: UCF and LCE weakness in FHP group should be considered to evaluate and manage the individuals with FHP.

Using DSLR Camera for Digital Film Making (영화제작에서 DSLR 카메라의 활용성에 관한 연구)

  • Son, Bo-Wook;Min, Kyung-Won
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2012
  • Since the Canon EOS 5D Mark II with which the Full HD video shooting is possible was launched in 2008, the utilization of the DSLR cameras has been increasing in the video production field. In this thesis, the shortages and advantages of the video functions that the 5D Mark II cameras have will be analysed and they will be compared with the RED cameras that are most widely used in the video production field today. Through this, the utilization of the DSLR camera in the film production field will be investigated. The DSLR camera has the advantage of having good clear picture since it uses the image sensor of big size, and of being able to utilize the various lenses of good quality, and is small in size and light in weight compared to the conventional HD cameras. Although, there are some limitations that there are parts to be improved such as the sound recording problems and development of various additional equipments, the excellent usage that the DLSR cameras have is presenting a new possibility for the film production.

Development of Automatic Dehydration System for Umbrella Drying (우산 건조를 위한 자동 제수 시스템 개발)

  • Kim, Ji-Hyun;Park, Joo-Hyung;Song, Min-Gi;Yoon, Jun-Su;Yeon, Ju-Eun;Lee, Da-Eun;Park, Hyun-Ju;Kang, Tae-Koo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • In this paper, an automatic dewatering system for drying water from umbrellas is proposed. In the past, there were problems that users had to put on plastic for removing the water from umbrella by covering it with a plastic or using a water dryer that removes water by manually touching the umbrella to the water surface. But this method was hard to expect. To solve these problems, an air compressor was used to develop a system to remove water from the umbrella by detecting the weight of the umbrella with pressure sensor when the user puts the umbrella into the dewatering machine and driving the motor. It is expected that this invention will have economic and environmental effects by eliminating the use of waste vinyl.

A RF MEMS Transmitter Based on Flexible Printed Circuit Boards (연성 인쇄 회로 기판을 이용한 초고주파 MEMS 송신기 연구)

  • Myoung, Seong-Sik;Kim, Seon-Il;Jung, Joo-Yong;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.1
    • /
    • pp.61-70
    • /
    • 2008
  • This paper presents the flexible MEMS transmitter based on flexible printed circuit board or FPCB, which can be transformed to arbitrary shape. The FPCB is suitable to fabricate light weight and small size modules with the help of its thin thickness. Moreover a module based on FPCB can be attached on the arbitrary curved surface due to its flexible enough to be lolled up like paper. In this paper, the flexible MEMS transmitter integrated on FPCB for a short-distance sensor network which is based on orthogonal frequency division multiplexing(OFDM) communication system is proposed. The active device of the proposed flexible MEMS transmitter is fabricated on InGaP/GaAs HBT process which has been used for power amplifier design to take advantages of high linear and high efficient characteristics. Moreover, the passive devices such as the filter and signal lines are integrated and fabricated on the FPCB board. The performance of the fabricated flexible MEMS transmitter is analyzed with EVM characteristics of the output signal.

Wind Tunnel Test for the Propeller Performance of the High Altitude UAV (고고도 무인기용 프로펠러 성능특성 풍동시험)

  • Cho, Teahwan;Kim, Yangwon;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.189-196
    • /
    • 2018
  • Propeller performance measurement system for high altitude UAV was designed and applied to the wind tunnel test for 2 propeller models with a diameter around 1 m. Mechanical power of the propeller was directly measured by using the torque sensor installed on the rotating axis. The thrust of whole operation body including the propeller was measured by thrust road cell. The guide rail system was suggested to reduce the weight influence of operation body on the thrust road cell. The influence of each measured variables on the aerodynamic coefficients was studied with the repeatability and uncertainty analysis. This analysis result shows that the accuracies of the road cell and the wind velocity were major factors for the thrust coefficient. Propeller performance with typical RPM was measured with various wind speeds and the test results was summarized by performance coefficients for 5 different RPM.