• Title/Summary/Keyword: weight sensor

Search Result 577, Processing Time 0.023 seconds

Research on the Security of Infrastructures Using fiber Optic ROTDR Sensor (광섬유 ROTDR센서를 이용한 사회기반시설물의 보안에 관한 연구)

  • Park, Hyung-Jun;Koh, Kwang-Nak;Kwon, Il-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.140-147
    • /
    • 2003
  • A detection technique is studied to determine the location and the weight of an intruder into infrastructure using fiber optic ROTDR (Rayleigh optical time domain reflectometry) sensor. Fiber optic sensing plates buried in sand are prepared to measure the intruder effects. The signal of ROTDR was analyzed to confirm the detection performance. The constructed ROTDR system could be used up to 12km at the pulse width of 30ns. The location error was less than 3m and the weight could be detected into three levels of grade, such as 20kgf, 40kgf and 60kgf.

Development of High-Precision Measuring Device for Six-axis Force/Moment Sensor (로봇용 6축 힘/모멘트 센서를 위한 고성능측정기 개발)

  • Shin, Hyi-Jun;Kim, Gab-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.10
    • /
    • pp.46-53
    • /
    • 2007
  • This paper describes the development of a high-precision measuring device with DSP (digital signal processor) for the accurate measurement of the 6-axis force/moment sensor mounted to a humanoid robot's ankle. In order to walk on uneven terrain safely, the foot should perceive the applied forces Fx, Fy, and Fz and moments Mx, My, and Mz to itself, and control the foot using the measured them. The applied forces and moments should be measured from two 6-axis force/moment sensors mounted to the feet, and the sensor is composed of Fx sensor, Fy sensor, Fz sensor, Mx sensor, My sensor and Mz sensor in a body (single block). In order to acquire output values from twelve sensors (two 6-axis force/moment sensor) accurately, the measuring device should get the function of high speed, and should be small in size. The commercialized measuring devices have the function of high speed, unfortunately, they are large in size and heavy in weight. In this paper, the high-precision measuring device for acquiring the output values from two 6-axis force/moment sensors was developed. It is composed of a DSP (150 MHz), a RAM (random access memory), amplifiers, capacities, resisters and so on. And the characteristic test was carried out.

Development of 6-axis force/moment sensor for a humonoid robot (인간형 로봇을 위한 6축 힘/모멘트센서 개발)

  • Kim, Gab-Soon;Shin, Hyi-Jun
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.211-219
    • /
    • 2007
  • This paper describes the development of 6-axis force/moment sensor for a humanoid robot. In order to walk on uneven terrain safely, the robot's foot should perceive the applied forces Fx, Fy, Fz and moments Mx, My, Mz to itself, and be controlled by the foot using the forces and moments. Also, in order to grasp unknown object safely, the robot's hand should perceive the weight of the object using the mounted 6-axis force/moment sensor to its wrist, and be controlled by the hand using the forces and moments. Therefore, 6-axis force/moment sensor should be necessary for a humanoid robot's hand and foot. In this paper, 6-axis force/moment sensor for a humanoid robot was developed using many PPBs (parallel plate-beams). The structure of the sensor was newly modeled, and the sensing element of the sensor was designed using theoretical analysis. Then, 6-axis force/moment sensor was fabricated by attaching strain-gages on the sensing elements, and the characteristic test of the developed sensor was carried out. The rated outputs from theoretical analysis agree well with the results from the experiments.

Monitoring of Low-velocity Impact Damage Initiation of Gr/Ep Panel Using Piezoelectric Thin Film sensor (압전필름센서를 이용한 복합재 평판의 저속충격 손상개시 모니터링)

  • 이관호;박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.174-178
    • /
    • 2001
  • The piezoelectric thin film sensor can be used to interpret variations in structural and material properties, e.g. for structural integrity monitoring and assessment. To illustrate one of this potential benefit, PVDF film sensors are used for monitoring impact damage initiation in Gr/Ep composite panel. Both PVDF film sensors and strain gages are surface mounted to the Gr/Ep specimens. A series of impact test at various impact energy by changing impact mass and height is performed on the instrumented drop weight impact tester. The sensor responses are carefully examined to predict the onset of impact damage such as matrix cracking, delamination, and fiber breakage, etc. Test results show that the particular waveforms of sensor signals implying the damage initiation and development are detected above the damage initiation impact energy. As expected, the PVDF film sensor is found to be more sensitive to impact damage initiation event than the strain gage.

  • PDF

Lateral direction acoustic detection of fiber optic sensor array using Fabry-Perot (Fabry-Perot을 이용한 두 개의 광섬유 센서배열의 횡방향 음압 감지 특성)

  • Lee, Jong-Kil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.342-345
    • /
    • 2005
  • To detect external acoustic signal, fiber optic sensor array using Fabry-Perot interferometer which had benefit of minimize and light-weight was used. The sensor head has 1cm in length, total length of fiber is 9.5cm, and the sensor supported at both ends, simply. External sound applied in lateral direction and detected two signals were compared each other. It was confirmed that the Fabry-Perot interferometric sensor array detected acoustic signal, effectively.

  • PDF

Intelligent Piezoelectric Sensor For Traffic Monitoring

  • IM J. I.;PARK K. M.;WANG J. H.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.263-266
    • /
    • 2004
  • This paper describes an intelligent piezoelectric traffic sensor which can be detected the over-weighted vehicles In motion. Based on finite element analysis for the sensor, the sensitivity was analyzed and the design was optimized. Studied parameters are the material properties of constitutional parts, the geometry of the sensor, the weight of the vehicle, and the speed of the vehicle. To verify the simulated results, we manufactured the sensor having the optimized geometry and the sensitivity was measured in the range from 0.5 to 3 ton of tensile and compressive stress. The measured results shows that the sensitivity and linearity of the sensor are closely agree with the designed values.

  • PDF

A Sensor Module Overcoming Thick Smoke through Investigation of Fire Characteristics (화재 특성 고찰을 통한 농연 극복 센서 모듈)

  • Cho, Min-Young;Shin, Dong-In;Jun, Sewoong
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.237-247
    • /
    • 2018
  • In this paper, we describe a sensor module that monitors fire environment by analyzing fire characteristics. We analyzed the smoke characteristics of indoor fire. Six different environments were defined according to the type of smoke and the flame, and the sensors available for each environment were combined. Based on this analysis, the sensors were selected from the perspective of firefighter. The sensor module consists of an RGB camera, an infrared camera and a radar. It is designed with minimum weight to fit on the robot. the enclosure of sensor is designed to protect against the radiant heat of the fire scene. We propose a single camera mode, thermal stereo mode, data fusion mode, and radar mode that can be used depending on the fire scene. Thermal stereo was effectively refined using an image segmentation algorithm, SLIC (Simple Linear Iterative Clustering). In order to reproduce the fire scene, three fire test environments were built and each sensor was verified.

Sound Detection Characteristics Using Fabry-Perot Fiber Optic Sensor which Simply Supported in Structure (양단이 지지된 Fabry-Perot 광섬유센서의 음압 감지 특성 연구)

  • 이종길;이진우;이준호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.585-591
    • /
    • 2003
  • In this paper, fiber optic sensor using Fabry-Perot interferometer which had benefit of minimize and light-weight was used. The sensor head has 1cm in length, total length of fiber is 9.5 chi and the sensor supported at both ends, simply. To analyze the acoustic characteristic non-directional speaker is used as a sound source. Acoustic applied in lateral direction and detected two signals were compared each other. Below 1㎑ fiber optic sensor has more sensitive than microphone, but in 2㎑ fiber optic sensor has less sensitive than microphone. This characteristic varies to the supporting system of fiber optic sensor. It was confirmed that the Fabry-Perot interferometric sensor detected acoustic signal, effectively. This kind of sensor can be applied to the structural health monitoring field of intellectual structure.

A Dynamic Pre-Cluster Head Algorithm for Topology Management in Wireless Sensor Networks (무선 센서네트워크에서 동적 예비 클러스터 헤드를 이용한 효율적인 토폴로지 관리 방안에 관한 연구)

  • Kim Jae-Hyun;Lee Jai-Yong;Kim Seog-Gyu;Doh Yoon-Mee;Park No-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6B
    • /
    • pp.534-543
    • /
    • 2006
  • As the topology frequently varies, more cluster reconstructing is needed and also management overheads increase in the wireless ad hoc/sensor networks. In this paper, we propose a multi-hop clustering algorithm for wireless sensor network topology management using dynamic pre-clusterhead scheme to solve cluster reconstruction and load balancing problems. The proposed scheme uses weight map that is composed with power level and mobility, to choose pre-clusterhead and construct multi-hop cluster. A clusterhead has a weight map and threshold to hand over functions of clusterhead to pre-clusterhead. As a result of simulation, our algorithm can reduce overheads and provide more load balancing well. Moreover, our scheme can maintain the proper number of clusters and cluster members regardless of topology changes.

Error Calibration of Initial Value of Weight Measuring Sensors with Different Feature of Forklift (특성이 다른 지게차 적재 중량 센서의 초기 값 오차 보정)

  • Han, Chi-moon;Yim, Choon-Sik;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.214-220
    • /
    • 2019
  • The calibration method of the initial value error obtained in the weight measurement through anchor bolt type strain gauge sensor is proposed. The strain gauge sensor is developed for preventing the overturning of forklift, which is the most frequent type of safety-accident in industry. It was confirmed that the initial value error is caused from the physical and mechanical error of anchor bolt, and the environmental problem. Since the elimination of these causes falls outside the realm of this research, we find out the calibrated values based on all the causes, and we adjust the initial values of analog-to-digital convertor (ADC) module consisted of strain gauge sensor block using the calibrated values. We use the linear interpolation method for our calibration. We confirm that four sensor modules have the different under 5% between the real weight and the measured value in the experiment applied with the calibration of initial values. The low correlation between the real weights and ADC values is also improved through the proposed calibration.