• Title/Summary/Keyword: weigh in motion

Search Result 76, Processing Time 0.018 seconds

Low Speed Weigh-In Motion System Using Multi-FBG Sensors (다중 광섬유 브라그 격자 센서를 적용한 저속용 자동계중 시스템)

  • Lee Hojoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.21-28
    • /
    • 2004
  • We have demonstrated a low speed weigh-in motion system using FBG sensors and performed field test at a trial road. Technique, called identical chirped grating interrogation, have used for a demodulation relying on the mismatching of two identical broadband chirped gratings. We compensated the fluctuation of LED power and the temperature of sensor and used a lock-in amplifier to reduce effect of noise. We could design a bending plate that the measurement results are independent of position of weight. The FBG sensors weigh-in motion system showed linearity and reproducibility.

A Study on Weight Estimation of Moving Vehicles using Bridge Weigh-in-Motion Technique (Bridge Weigh-in-Motion 기법을 이용한 주행차량 중량추정에 관한 연구)

  • Oh, Jun-Seok;Park, Jooyoung;Kim, Junkyeong;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.29-37
    • /
    • 2015
  • In this study, the estimation of axial load and total axial load was conducted using Bridge Weigh-in-Motion(BWIM) technique which generally consists of devices for measuring the strain induced in the bridge by the vehicles. axle detectors for collecting information on vehicle velocity and axle spacing. and data acquisition equipment. Vehicle driving test for the development of the BWIM system is necessary but it needs much cost and time. In addition, it demands various driving conditions for the test. Thus, we need a numerical-simulation method for resolving the cost and time problems of vehicle driving tests, and a way of measuring bridge response according to various driving conditions. Using a bridge model reflecting the dynamic characteristic contributes to increased accuracy in numerical simulation. In this paper, we conduct a numerical simulation which reflects the dynamic characteristic of a bridge using the Bridge Weigh-in-Motion technique, and suggest overload vehicle enforcement technology.

Analysis of Rear-end Collision Risks Using Weigh-in-Motion Data (고속도로 Weigh-in-Motion(WIM) 이벤트 자료를 활용한 후미추돌 위험도 분석 기법)

  • Oh, Min Soo;Park, Hyeon Jin;Oh, Cheol;Park, Soon Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.152-167
    • /
    • 2018
  • The high-speed weigh-in-motion system can collect the traveling speed and load information of individual vehicles, which can be used in a variety of ways for the traffic surveillance. However, it has a limit to apply the high-speed weigh-in-motion data directly to a safety analysis because high-speed weigh-in-motion's raw data are point measured data. In order to overcome this problem, this paper proposes a method to calculate the conflict rate and the Impulse severity based on surrogate safety measures derived from the detection time, detection speed, vehicle length, vehicle type, vehicle weight. It will be possible to analyze and evaluate the risk of rear-end collision on freeway traffic. In addition, this study is expected to be used as a fundamental for identifying crash risks and developing policies to enhance traffic safety on freeways.

Calibration Method of Vehicle Weight Data from Weigh-In-Motion System According to Temperature Effects (온도의 영향에 대한 Weigh-In-Motion 시스템의 차량중량자료 보정기법)

  • Hwan, Eui-Seung;Lee, Sang-Woo
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.187-196
    • /
    • 2010
  • The purpose of this study is to develop the calibration method for temperature effects to improve the accuracy of the Weigh-In-Motion(WIM) system for collecting long-term truck weight data. WIM system was installed at a location where the truck traffic volume is high and weight data has been collected from January 2010. In this study, as a calibration measure, the first axle weight of Truck Type 10, the semi tractor-trailer is used based on the fact that the first axle weight is relatively constant, independent of the cargo weight. From this fact, calibration equations are developed from the relationship between the axle weight and the temperature(daily mean, maximum and minimum). Analysis on calibrated weight data shows adequacy of the proposed calibration method. Results of this study can be used to improve the accuracy of the WIM system and to carry out more rational design of pavement and bridge structures.

Field Experiment of Post-Tensioned Prestressed Concrete Pavement for Weigh-in-Motion Sensor Installed Section (포스트텐션 콘크리트 포장의 고속축중계 센서 설치구간 적용을 위한 현장실험)

  • Park, Hee-Beom;Kim, Seong-Min;Yun, Dong-Ju;Kim, Dong-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.15-16
    • /
    • 2010
  • The field experiments and analyses were performed to apply Post-Tensioned Prestressed Concrete Pavement(PTCP) at the Weigh-in-Motion(WIM) sensor installed sections. The experimental results showed that PTCP could be acceptable for WIM sections because the displacements were negligibly smaller at the cutting location for sensor installation.

  • PDF

Determination of Multi-Lane Loading Factors for Vehicular Load of Bridges using Weigh-In-Motion Data (고속축중계 자료를 이용한 차량하중 다차로재하계수 결정)

  • Hwang, Eui-Seung;Nguyen, Thi Hang
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.123-132
    • /
    • 2011
  • The purpose of this study is to calculate and propose rational multi-lane loading factors for bridge design considering the probability of simultaneous truck passing in adjacent lanes and real truck weights. The probability of simultaneous truck passing is calculated by analyzing video image taken at various locations in highways and national roads. Weigh-In-Motion system data at two locations are used, which is combined with the probability of multiple presence to calculate the multi-lane loading factors for typical 2 lane and 5 lane bridges. Statistical properties of multi-lane loading factors are also calculated assuming that locations for video images and WIM data represent the overall traffic condition in the country. Results are compared with various design codes in the world and they show that the values are between the current Korea Bridge Design Code and AASHTO LRFD specification or Eurocode and are similar to Canadian Code.

Experimental Analysis of Weigh-in-Motion Sensor Installed Post-Tensioned Concrete Pavement Behavior (고속축중계가 설치된 포스트텐션 콘크리트 포장의 실험적 거동 분석)

  • Park, Hee-Beom;Bae, Jong-Oh;Kim, Seong-Min;An, Zu-Og
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.139-146
    • /
    • 2010
  • This research was conducted to analyze the behavior of the post-tensioned concrete pavement (PTCP) system in which weigh-in-motion (WIM) sensors were installed. One lane of PTCP was constructed after removing the existing asphalt pavement. The frictional resistance between the slab and the underlying layer should be small enough for the PTCP slab to properly have prestresses by tensioning. By performing an experimental construction of PTCP, the friction effects and the longitudinal displacements of PTCP under environmental loads were investigated. Based on the knowledge obtained from the experiments, the actual PTCP sections including WIM sensors were constructed and the curling behavior of the system was investigated. As a result, the behavior of the PTCP system was not affected by the existence of WIM sensors, and the appropriate PTCP system when installing WIM sensors in it could be developed.

The Development of Bridge Weigh-in-Motion System for the Measurement of Traffic Load (주행중인 차량하중 측정을 위한 BWIM 시스템 개발)

  • Park, Min-Seok;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.111-123
    • /
    • 2006
  • In the design of bridges, exact evaluation of traffic loading is very important for the safety and maintenance of bridges. In general, traffic loading is represented by live load (including impact load) and fatigue load. For exact evaluation of traffic loading, it is important to get reliable and comprehensive truck data including the traffic and weight information. It requires the development of Bridge Weigh-In-Motion (BWIM), which measures the truck weights without stopping the traffic. Objectives of the study is (1) to develop the BWIM system, (2) to verified the system in bridges in Highways.

Characteristics of Heavy Vehicles Using Expressway Networks Based on Weigh-in-motion Data (WIM 데이터를 이용한 고속도로 중차량 특성 분석)

  • Gil, Heungbae;Kang, Sang Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1731-1740
    • /
    • 2013
  • The design life and durability of the bridges are strongly affected by the Gross Vehicle Weight(GVW) of heavyweight trucks. The Weigh-In-Motion(WIM) systems are typically used to collect information on truck total weight and speed. The statistical analysis of the GVW measured using High Speed WIM systems showed that most of heavy vehicles were from Vehicle Type 7, 10, and 12. The analysis was also carried out to determine goodness of fit with theoretical probability distributions. The normal distribution was shown to best describe the overall distribution of GVW. The top 10% of the GVW appeared to best fit by the Weibull 3 probability distribution.