• Title/Summary/Keyword: web proxy cache

Search Result 29, Processing Time 0.028 seconds

Efficient Management of Proxy Server Cache for Video (비디오를 위한 효율적인 프록시 서버 캐쉬의 관리)

  • 조경산;홍병천
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.2
    • /
    • pp.25-34
    • /
    • 2003
  • Because of explosive growth in demand for web-based multimedia applications, proper proxy caching for large multimedia object (especially video) has become needed. For a video object which is much larger in size and has different access characteristics than the traditional web object such as image and text, caching the whole video file as a single web object is not efficient for the proxy cache. In this paper, we propose a proxy caching strategy with the constant-sized segment for video file and an improved proxy cache replacement policy. Through the event-driven simulation under various conditions, we show that our proposal is more efficient than the variable-sized segment strategy which has been proven to have higher hit ratio than other traditional proxy cache strategies.

  • PDF

A New Hybrid Architecture for Cooperative Web Caching

  • Baek, Jin-Suk;Kaur, Gurpreet;Yang, Jung-Hoon
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • An effective solution to the problems caused by the explosive growth of World Wide Web is a web caching that employing an additional server, called proxy cache, between the clients and main server for caching the popular web objects near the clients. However, a single proxy cache can easily become the bottleneck. Deploying groups of cooperative caches provides scalability and robustness by eliminating the limitations caused by a single proxy cache. Two common architectures to implement the cooperative caching are hierarchical and distributed caching systems. Unfortunately, both architectures suffer from performance limitations. We propose an efficient hybrid caching architecture eliminating these limitations by using both the hierarchical and same level caches. Our performance evaluation with our investigated simulator shows that the proposed architecture offers the best of both existing architectures in terms of cache hit rate, the number of query messages from clients, and response time.

  • PDF

Performance Impact of Large File Transfer on Web Proxy Caching: A Case Study in a High Bandwidth Campus Network Environment

  • Kim, Hyun-Chul;Lee, Dong-Man;Chon, Kil-Nam;Jang, Beak-Cheol;Kwon, Tae-Kyoung;Choi, Yang-Hee
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.52-66
    • /
    • 2010
  • Since large objects consume substantial resources, web proxy caching incurs a fundamental trade-off between performance (i.e., hit-ratio and latency) and overhead (i.e., resource usage), in terms of caching and relaying large objects to users. This paper investigates how and to what extent the current dedicated-server based web proxy caching scheme is affected by large file transfers in a high bandwidth campus network environment. We use a series of trace-based performance analyses and profiling of various resource components in our experimental squid proxy cache server. Large file transfers often overwhelm our cache server. This causes a bottleneck in a web network, by saturating the network bandwidth of the cache server. Due to the requests for large objects, response times required for delivery of concurrently requested small objects increase, by a factor as high as a few million, in the worst cases. We argue that this cache bandwidth bottleneck problem is due to the fundamental limitations of the current centralized web proxy caching model that scales poorly when there are a limited amount of dedicated resources. This is a serious threat to the viability of the current web proxy caching model, particularly in a high bandwidth access network, since it leads to sporadic disconnections of the downstream access network from the global web network. We propose a peer-to-peer cooperative web caching scheme to address the cache bandwidth bottleneck problem. We show that it performs the task of caching and delivery of large objects in an efficient and cost-effective manner, without generating significant overheads for participating peers.

Design and analytical evaluation of a fuzzy proxy caching for wireless internet

  • Bae, Ihn-Han
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1177-1190
    • /
    • 2009
  • In this paper, we propose a fuzzy proxy cache scheme for caching web documents in mobile base stations. In this scheme, a mobile cache model is used to facilitate data caching and data replication. Using the proposed cache scheme, the individual proxy in the base station makes cache decisions based solely on its local knowledge of the global cache state so that the entire wireless proxy cache system can be effectively managed without centralized control. To improve the performance of proxy caching, the proposed cache scheme predicts the direction of movement of mobile hosts, and uses various cache methods for neighboring proxy servers according to the fuzzy-logic-based control rules based on the membership degree of the mobile host. The performance of our cache scheme is evaluated analytically in terms of average response delay and average energy cost, and is compared with that of other mobile cache schemes.

  • PDF

Improving Performance of Internet by Using Hierarchical Proxy Cache (계층적 프록시 캐쉬를 이용한 인터넷 성능 향상 기법)

  • 이효일;김종현
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • Recently, as construction of information infra including high-speed communication networks remarkably expands, more various information services have been provided. Thus the number of internet users rapidly increases, and it results in heavy load on Web server and higher traffics on networks. The phenomena cause longer response time that means worse quality of service. To solve such problems, much effort has been attempted to loosen bottleneck on Web server, reduce traffic on networks and shorten response times by caching informations being accessed more frequently at the proxy server that is located near to clients. And it is also possible to improve internet performance further by allowing clients to share informations stored in proxy caches. In this paper, we perform simulations of hierarchical proxy caches with the 3-level 4-ary tree structure by using real web traces, and analyze cache hit ratio for various cache replacement policies and cache sizes when the delayed-store scheme is applied. According to simulation results, the delayed-store scheme increases the remote cache hit ratio, that improves quality of service by shortening the service response time.

  • PDF

An Adaptive Cache Replacement Policy for Web Proxy Servers (웹 프락시 서버를 위한 적응형 캐시 교체 정책)

  • Choi, Seung-Lak;Kim, Mi-Young;Park, Chang-Sup;Cho, Dae-Hyun;Lee, Yoon-Joon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.6
    • /
    • pp.346-353
    • /
    • 2002
  • The explosive increase of World Wide Web usage has incurred significant amount of network traffic and server load. To overcome these problems, web proxy caching replicates frequently requested documents in the web proxy closer to the users. Cache utilization depends on the replacement policy which tries to store frequently requested documents in near future. Temporal locality and Zipf frequency distribution, which are commonly observed in web proxy workloads, are considered as the important properties to predict the popularity of documents. In this paper, we propose a novel cache replacement policy, called Adaptive LFU (ALFU), which incorporates 1) Zipf frequency distribution by utilizing LFU and 2) temporal locality adaptively by measuring the amount of the popularity reduction of documents as time passed efficiently. We evaluate the performance of ALFU by comparing it to other policies via trace-driven simulation. Experimental results show that ALFU outperforms other policies.

Web Service Proxy Architecture using WS-Eventing for Reducing SOAP Traffic

  • Terefe, Mati Bekuma;Oh, Sangyoon
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.2
    • /
    • pp.159-167
    • /
    • 2013
  • Web Services offer many benefits over other types of middleware in distributed computing. However, usage of Web Services results in large network bandwidth since Web Services use XML-based protocol which is heavier than binary protocols. Even though there have been many researches to minimize the network traffic and bandwidth usages of Web Services messages, none of them are solving problem clearly yet. In this paper, we propose a transparent proxy with cache to avoid transfer of repeated SOAP data, sent by Web Service to an application. To maintain the cache consistency, we introduce publish/subscribe paradigm using WS-Eventing between the proxy and Web Service. The implemented system based on our proposed architecture will not compromise the standards of Web Service. The evaluation of our system shows that caching SOAP messages not only reduces the network traffic but also decreases the request delays.

A Modified LRU Page Replacement Policy with LMF for Web Proxy Cache (LMF로 수정된 웹 프락시 캐쉬용 LRU페이지 교체 정책)

  • 이용임;김주균
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.426-433
    • /
    • 2003
  • Management policies of Web Proxy Cache, for the QoS of Web users, are mainly focused on the page replacement and the data consistency policy. But the two subjects have been studied independently to each other regardless of its possibility of cooperation. In this paper, we introduce the performance improvement obtained by adapting the characteristic of LMF used in data consistency policy to LRU, thus taking the better performance synergy as a result of complementary cooperation. Various policies for the management of Web Proxy Cache are in progress, this study can be a way of performance guide to increase cache hit ratio and reduce the transmission overhead of Web Server.

Web Proxy Cache Replacement Algorithms using Object Type Partition (개체 타입별 분할공간을 이용한 웹 프락시 캐시의 대체 알고리즘)

  • Soo-haeng, Lee;Sang-bang, Choi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.5C
    • /
    • pp.399-410
    • /
    • 2002
  • Web cache, which is functionally another word of proxy server, is located between client and server. Web cache has a limited storage area although it has broad bandwidth between client and proxy server, which are usually connected through LAN. Because of limited storage capacity, existing objects in web cache can be deleted for new objects by some rules called replacement algorithm. Hit rate and byte-hit rate are general metrics to evaluate replacement algorithms. Most of the replacement algorithms do satisfy only one metric, or sometimes none of them. In this paper, we propose two replacement algorithms to achieve both high hit rate and byte-hit rate with great satisfaction. In the first algorithm, the cache is appropriately partitioned according to file types as a basic model. In the second algorithm, the cache is composed of two levels; the upper level cache is managed by the basic algorithm, but the lower level is collectively used for all types of files as a shared area. To show the performance of the proposed algorithms, we evaluate hit rate and byte-hit rate of the proposed replacement algorithms using the trace driven simulation.

Performance Evaluation of Disk I/O for Web Proxy Servers (웹 프락시 서버의 디스크 I/O 성능 평가)

  • Shim Jong-Ik
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.603-608
    • /
    • 2005
  • Disk I/O is a major performance bottleneck of web proxy server. Today's most web proxy sowers are design to run on top of a general purpose file system. But general purpose file system can not efficiently handle web cache workload, small files, leading to the performance degradation of entire web proxy servers. In this paper we evaluate the performance potential of raw disk to reduce disk I/O overhead of web proxy servers. To show the performance potential of raw disk, we design a storage management system called Block-structured Storage Management System (BSMS). And we also actually implement web proxy server that incorporate BSMS in Squid. Comprehensive experimental evaluations show that raw disk can be a good solution to improve disk I/O performance significantly for web proxy servers.