• Title/Summary/Keyword: weathered layer

Search Result 145, Processing Time 0.022 seconds

Infiltration characteristics and hydraulic conductivity of weathered unsaturated soils

  • Song, Young-Suk;Hong, Seongwon
    • Geomechanics and Engineering
    • /
    • v.22 no.2
    • /
    • pp.153-163
    • /
    • 2020
  • Laboratory experiments were conducted with two different soil conditions to investigate rainfall infiltration characteristics. The soil layer materials that were tested were weathered granite soil and weathered gneiss soil. Artificial rainfall of 80 mm/hr was reproduced through the use of a rainfall device, and the volumetric water content and matric suction were measured. In the case of the granite soil, the saturation velocity and the moving direction of the wetting front were fast and upward, respectively, whereas in the case of the weathered gneiss soil, the velocity and direction were slow and downward, respectively. Rainfall penetrated and saturated from the bottom to the top as the hydraulic conductivity of the granite soil was higher than the infiltration capacity of the artificial rainfall. In contrast, as the hydraulic conductivity of the gneiss soil was lower than the infiltration capacity of the rainfall, ponding occurred on the surface: part of the rainfall first infiltrated, with the remaining rainfall subsequently flowing out. The unsaturated hydraulic conductivity function of weathered soils was determined and analyzed with matric suction and the effective degree of saturation.

Application of Geotechnical Properties to the Slope Stability Analysis in Deep Weathered Zone (깊은 풍화대 사면의 안정성 해석에서 물성치 산정 및 적용)

  • Kim, Kyung-Tae;Park, See-Boum;Kim, Chang-Hyun;Lee, Jong-Bum;Yoon, Yea-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.768-776
    • /
    • 2006
  • Recently in spite of Development of Investigation machine, in Application of Geotechnical Properties by empirical recommendation to the Slope Stability Analysis. It is generally Application of convenience and conservative Geotechnical Properties by Borehole Shear Test(BST) in Representative Zone that Non-Division of Increase as the depth of Strength Parameters In Deep Weathered Zone. Therefore, it is become environment pollution and Non-Economical Slope Design to Application of convenience and conservative Geotechnical Properties. The production mechanism of Deep Weathered Zone is tend to Weathering Degree low and Strength increase by increase as the depth. it is realistic design that Division of Deep Weathered Zone and application Geotechnical Properties of Each Layer. In this Paper, Determined The Relationship of Strength Parameters between Standard Penetration Test(SPT), Borehole Shear Test(BST) and empirical recommendation also Applyed each strength parameters of divided zone to the Slope Stability Analysis by continuous Borehole Shear Test(BST) in Deep Weathered Zone during design of The 2nd Bridge Connection Road of Incheon International Airport.

  • PDF

Estimation of Shear Wave Velocity of Weathered Granite Layer Using Nonlinear Multiple Regression Analysis; A Case Study in South Korea (비선형 다중회귀분석을 통한 국내 화강 풍화대 전단파 속도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Baek, Sung-Ha;Chung, Choong-Ki;Kwak, Tae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.29-37
    • /
    • 2021
  • Since many geotechnical structures are constructed on a weathered granite layer, it is important to evaluate their characteristics. As a seismic design is the more important nowadays, the demands to estimate a shear wave velocity (VS) based on acceptable methods are increasing. In this study, an empirical equation predicting VS of the weathered granite layer is suggested based on the nonlinear multiple variable regression analysis whose independent variables are both SPT (Standard penetration test)-N60 and chemical weathering index. It is concluded that the accuracy of the empirical equation estimating VS of the weathered granite layer increases when it considers the chemical weathering index as an additional independent variable compared to the result of simple regression analysis using only N60.

Analysis of the lateral displacement to the Large Diameter Bored Pile based on the application of the Lateral coefficient of subgrade reaction (수평지반반력계수에 따른 대구경 현장타설말뚝의 수평변위 분석)

  • Chae, Young-Su;Kim, Nam-Ho;Bang, Ei-Souk;Lee, Kyoung-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.528-535
    • /
    • 2005
  • Using the case of design to the Large diameter Bored Pile, We showed the various method to estimate the Lateral coefficient of subgrade reaction and analyzed the lateral displacement behavior according to the characteristics of sub layer distribution. According to the study, Mutual relation to the N value and the soil modulus of deformation showed 400N to 800N to the fine grained soil and weathered soil. It showed simular tendancy with the proposed expression of Schmertmann. But Weathered rock was over estimated as 4,200N. $k_h$ to the sedimentory soil and weathered rock each showed these orded of Schmertmann-PMT-2,800N and Schmertmann-2,800N-PMT. As the factor($\alpha$) 4 was applied to the estimation in weathered rock, $k_h$ to the PMT was calculate as a big value. If the pile is long and the pile is surpported to the soil, Lateral displacement was in inverse proportion ratio to the value of $k_h$. But the case of shallow soil layer(early bedrock) and the short pile, Lateral displacement was affected by the behavior of socheted pile to the bedrock not by the upper soil layer.

  • PDF

Investigation on Weathering Degree and Shear Wave Velocity of Decomposed Granite Layer in Hongsung (홍성 지역 화강 풍화 지층의 풍화도 및 전단파 속도에 관한 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.431-443
    • /
    • 2006
  • As part of a fundamental characterization for subsurface layers in Korea, the weathering degree and shear wave velocity ($V_S$) were evaluated from the X-ray fluorescence analyses and the site investigations containing boring and in-situ seismic tests, respectively, for decomposed granite layer in Hongsung. The subsurface layers at Hongsung were composed of 10 to 40 m thickness of weathered layer in most sites. According to the results of weathering degree analyses in Hongsung, it was examined that three chemical weathering indexes such as MWPI, VR and WIP generally increased with decreasing depth. From the in-situ seismic tests, the $V_S$ was determined as the range between 200 and 500 m/s in weathered layer. Based on the $V_S$ and N value at borehole seismic testing sites, N-$V_S$ correlations were established for weathered layer. Furthermore, the relationships of three representative weathering indexes with the $V_S$ and N value indicated that the MWPI, WIP and 100/VR increased linearly as increasing $V_S$ and exponentially as increasing N value.

Radiation shielding properties of weathered soils: Influence of the chemical composition and granulometric fractions

  • Pires, Luiz F.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3470-3477
    • /
    • 2022
  • Soils are porous materials with high shielding capability to attenuate gamma and X-rays. The disposal of radionuclides throughout the soil profile can expose the living organisms to ionizing radiation. Thus, studies aiming to analyze the shielding properties of the soils are of particular interest for radiation shielding. Investigations on evaluating the shielding capabilities of highly weathered soils are still scarce, meaning that additional research is necessary to check their efficiency to attenuate radiation. In this study, the radiation shielding properties of contrasting soils were evaluated. The radiation interaction parameters assessed were attenuation coefficients, mean free path, and half- and tenth-value layers. At low photon energies, the photoelectric absorption contribution to the attenuation coefficient predominated, while at intermediate and high photon energies, the incoherent scattering and pair production were the dominant effects. Soils with the highest densities presented the best shielding properties, regardless of their chemical compositions. Increases in the attenuation coefficient and decreases in shielding parameters of the soils were associated with increases in clay, Fe2O3, Al2O3, and TiO2 amounts. In addition, this paper provides a comprehensive description of the shielding properties of weathered soils showing the importance of their granulometric fractions and oxides to the attenuation of the radiation.

Evaluation of Bearing Capacity and Load Transfer Characteristics of Point Foundation(PF) Method through the Large Plate Bearing Test (대형 평판재하시험을 통한 PF 공법의 하중전이 특성 분석)

  • Kang, Min-Su;Jo, Myung-Su;Koh, Yong-Taek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.142-143
    • /
    • 2021
  • The general ground conditions in Korea are distributed in order of fill, deposit soil, weathered soil, weathered rock, soft rock. The fill soil and deposit soil located at the top have relatively low strength compared to the lower layer, and they are sometimes classified as soft ground according to the standard penetration test results. In this study, the PF method, a ground improvement method, was applied to the soft layer, a large plate load test was conducted on the improved ground, and the results were reviewed.

  • PDF

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

A Study(VI) on the Development of Charts and Equations Predicting Bearing Capacity for Prebored PHC Piles Socketed into Weathered Rock through Sandy Soil Layers - Axial Compressive Bearing Capacity Prediction Table Solution or Chart Solution - (사질토를 지나 풍화암에 소켓된 매입 PHC말뚝에서 지반의 허용압축지지력 산정도표 및 산정공식 개발에 관한 연구(VI) - 지반의 허용압축지지력 산정용 표해 또는 도해 -)

  • Nam, Moon S.;Kwon, Oh-Kyun;Park, Mincheol;Lee, Chang Uk;Choi, Yongkyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.75-95
    • /
    • 2019
  • The numerical analysis on PHC piles socketed into weathered rocks through sandy soil layers was conducted to propose the table solution or the chart solution to obtain the mobilization capacity. The mobilization capacity was determined at the settlement of 5% pile diameter and applied a safety factor of 3.0. In order to utilize the excellent compressive strength of the PHC pile effectively, it is recommended that the allowable bearing capacity of ground would be designed to be more than the long-term allowable compressive pile load. A procedure for determining an allowable pile capacity for PHC piles socketed into weathered rocks through sandy soil layers is given by the sum of the allowable skin friction of the sandy soil layer and the weathered rock layer and the allowable end bearing capacity of the weathered rock layer. The design efficiency of the PHC pile is about 85% at the reasonable design stage in the verification of the newly proposed method. Thus, long-term allowable compressive load (Pall) level of PHC piles can be utilized in the optimal design stage.