• Title/Summary/Keyword: weather signal

Search Result 158, Processing Time 0.028 seconds

A Study on Anomalous Propagation Echo Identification using Naive Bayesian Classifier (나이브 베이지안 분류기를 이용한 이상전파에코 식별방법에 대한 연구)

  • Lee, Hansoo;Kim, Sungshin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.89-90
    • /
    • 2016
  • Anomalous propagation echo is a kind of abnormal radar signal occurred by irregularly refracted radar beam caused by temperature or humidity. The echo frequently appears in ground-based weather radar. In order to improve accuracy of weather forecasting, it is important to analyze radar data precisely. Therefore, there are several ongoing researches about identifying the anomalous propagation echo all over the world. This paper conducts researches about a classification method which can distinguish anomalous propagation echo in the radar data using naive Bayes classifier and unique attributes of the echo such as reflectivity, altitude, and so on. It is confirmed that the fine classification results are derived by verifying the suggested naive Bayes classifier using actual appearance cases of the echo.

  • PDF

Computer-Interfacing Development for Propeller-Anemometer

  • Saad, Nor Hayati;Janin, Zuriati;Piah, Ruhaidawati Mohd Ali
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.515-519
    • /
    • 2004
  • A Propeller-Anemometer is an instrument used specifically, to measure the wind speed. The accurate measurement of the wind speed is vitally important such required by any weather stations. In this research, the measurand of the instrumentation was the rotational speed of the propeller and the instrumentation result or output data was wind velocity. The speed measured was recorded digitally in the computer by using specific software. A specific sensor used to measure a variable by converting information of the variable (rotational speed of the propeller) into a dependent signal such as electrical signal in form of voltage. The development of Propeller-Anemometer involved few sets of instrumentation process and equipment. It included three major parts, mechanical, electronics and computer. The main instrumentation processes were physical and signal interfacing, signal conditioning, logic interfacing, data transmission to computer and processing the data. Generally, this paper presents the overall concept and design of Propeller-Anemometer Instrumentation. However, an emphasis was mainly in designing and building the interfacing system, hardware and software. Basically, for the first phase of the development, this project designed and built the RS232 terminal using Peripheral Interface Controller (PIC), PIC16F873. The hardware can be interfaced to computer or other compatible devices. This routine converted input voltage from the circuit to speed (velocity) and transmitted them afterwards to the target device by using the RS232 transmission protocol. This implementation implied a computer display as visual interface. For the purpose of this paper, RS232 data transmission was carried out using a Microsoft Visual Basic software routine.

  • PDF

Efficient indoor positioning systems for indoor location-based service provider (실내 위치 기반 서비스 제공을 위한 효율적인 실내 위치 측위 시스템)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1368-1373
    • /
    • 2015
  • Recently, There is increasing interest in the IoT(Internet of Thing) as intelligent information service that enables communication between people and things based on internet. In particular the demand for indoor location-based services with the development of smart devices is rapidly increasing. Using the RSSI signal that is provide to the BLE(Bluetooth Low Energy) for Indoor location information measurement calculates distance information between beacon and mobile terminal. However, simply using the RSSI signal to the distance measurement has a difficult to get the indoor location information due to the influence of the signal interference and the weather. In this paper, by performing an operation for obtaining a reliable distance information from the signal information of iBeacon we propose a system for providing reliable indoor location.

Crane Monitoring System for Moving Objects in Safety Lines (크레인 안전선 접근 이동 물체 감시 시스템)

  • Chong, Ui-Pil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.237-241
    • /
    • 2011
  • Stable operation of an industry crane becomes more important as current industry facilities become larger and operate at higher speeds. This paper proposes implementing a system for monitoring moving objects within safety lines of an industry crane by camera. The cost of implementing such a system is low, since it requires only a webcam and notebook computer. The detection algorithm of moving objects uses the feature extraction method by image differential histograms. The proposed system is robust to variations in the weather and environment. The area of the inside safety lines is considered and shadow removal algorithm is used for good performance of the system. The system is valuable for practical applications in the industry.

Study on Infrared Signature Variations of a Naval Ship Operated at sea Near Geoje-do Island (거제도 인근해상에서 운용되는 함정의 적외선 신호 변화 특성에 대한 연구)

  • Kil, Tae-Jun;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • It is essential to understand the infrared signature of a naval ship to survive against various missile attacks under variable environmental conditions. As guided missiles are developing to equip more accurate IR seekers, research works for countermeasure and IR stealth technology are strongly required. But challenging works are continuously suggested for predicting and analyzing IR signal status of naval ships to achieve low observable performance under various weather conditions, variable missions and developing threats. In this study, overall guidelines of setting design criteria for low observable ships are proposed by considering varying environmental conditions including daily and seasonal variations. Test and evaluation criteria for newly constructed ships for target and background temperature difference is proposed as a design criteria which can be predicted by change of condition and ship's speed. Through the proposed techniques and procedures, it is expected to establish the measurement and evaluation criteria by using temperature, IR Signal differences between the ship and the background.

Analysis of Phase Noise in a FM-CW Radar (FM-CW 레이다에서의 위상잡음 분석)

  • Lee, Jonggil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.758-761
    • /
    • 2009
  • It is necessary to estimate the Doppler spectrum for each range cell for the extraction of useful information from the return echoes in radar systems used for the remote sending purpose such as detection of moving targets and weather surveillance. The signal amplitude in the given frequency band is the important parameter in the detection and tracking of targets. However, the system performance can be seriously degraded if the efficient removal of the strong clutter is not possible. If the phase noise spreads both the signal and clutter, the clutter removal can be very difficult and the accuracy of frequency estimates is also deteriorated. Therefore, in this paper, the effects of phase noise are analyzed in the estimation of beat frequencies.

  • PDF

항공기 탑재형 다목적 레이다 신호처리기 설계

  • Kim, Hyoun-Kyoung;Moon, Sang-Man;Kim, Tae-Sik;Lee, Hae-Chang;Kang, Kyoung-Woon
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.229-237
    • /
    • 2004
  • In this paper, the design method and algorithms of the signal processor for a multipurpose radar system are analyzed. The signal processor, operating at the two modes-collision avoidance mode and weather mode, has 4 steps of ADC, NCI, STC, CFAR. Several algorithms of NCI and CFAR are analyzed and the optimal design is proposed to the system. CVI and CMLD algorithm have good performance in decreasing the false alarm rate and increasing detection probability, Regarding processor computational capacity, K=12 for CVI, M=16~20, Ko=M-4 for CMLD is suggested. CVI processing needs much time, two or more processors need to be allocated to CVI. So, for the system with four processors, two processors should be allocated to VID of NCI with ADC input and CFAR with STC, and two processors are should be allocated to CVI.

  • PDF

Analysis of interference on Digital Radio Receiver (디지털 라디오 수신기에 마치는 전파 간섭 분석)

  • Hong, Moo-Hyun;Kim, Ju-Seok;Lee, Yong-Tae;Baek, Myung-Sun;Kim, Kyung-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1059-1065
    • /
    • 2010
  • Recently, analog broadcasting are being converted into digital radio broadcasts, Among the various ways that HD Radio is a candidate for the U.S. approach, Digital Radio will transmit a digital signal to existing analog FM/AM. It provides clear sound quality, traffic information, weather information and various value-added services. In addition, the converted digital radio will be able to meet demand to growing demand for analog FM. In this paper, Digital FM Radio system in the same frequency band using electric field strength of the received digital radio broadcasting interference effects were analyzed. And Digital FM Radio Receiver interference effects were analyzed by interference signal power and signal power. Results were confirmed by applying equation at minimum field strength and SNR.

Evaluation of wireless communication devices for remote monitoring of protected crop production environment (시설재배지 환경 원격 모니터링을 위한 무선 통신 장비 평가)

  • Hur, Seung-Oh;Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Huh, Yun-Kun;Choi, Jin-Yong
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.747-752
    • /
    • 2011
  • Wireless technology has enabled farmers monitor and control protected production environment more efficiently. Utilization of USN (Ubiquitous Sensor Network) devices also brought benefits due to reduced wiring and central data handling requirements. However, wireless communication loses signal under unfavorable conditions (e.g., blocked signal path, low signal intensity). In this paper, performance of commercial wireless communication devices were evaluated for application to protected crop production. Two different models of wireless communication devices were tested. Sensors used in the study were weather units installed outside and top of a greenhouse (wind velocity and direction, precipitation, temperature and humidity), inside ambient condition units (temperature, humidity, $CO_2$, and light intensity), and irrigation status units (irrigation flow and pressure, and soil water content). Performance of wireless communication was evaluated with and without crop. For a 2.4 GHz device, communication distance was decreased by about 10% when crops were present between the transmitting and receiving antennas installed on the ground, and the best performance was obtained when the antennas were installed 2 m above the crop canopy. When tested in a greenhouse, center of a greenhouse was chosen as the location of receiving antenna. The results would provide information useful for implementation of wireless environment monitoring system for protected crop production using USN devices.

Group Behavior Pattern and Activity Analysis System Using Big Data Based Acceleration Signals (빅데이터 기반의 가속도 신호를 이용한 집단 행동패턴 및 활동성 분석 시스템)

  • Kim, Tae Woong
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.83-88
    • /
    • 2017
  • The data analysis system using Big-data is worthy to be used in various fields such as politics, traffic, natural disaster, shopping, customer management, medical care, and weather information. Particularly, the analysis of the momentum of an individual using an acceleration signal collected from a wearable device has already been widely used. However, since the data used in such a system stores only the data necessary for measuring the individual activity, it does not provide various analysis results other than the exercise amount of the individual. In this paper, I propose a system that analyzes collective behavior pattern and activity based on the acceleration signal that can be collected from personal smartphones for 24 hours a day and stored in big data. I also propose a system that sends acceleration signals and receives analysis results using standard messaging to use on various smart devices.