• Title/Summary/Keyword: weather signal

Search Result 158, Processing Time 0.027 seconds

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

Analysis of C/N Variation of Ku Band Satellite Beacon Receiver According to Rain Attenuation (강우 감쇠에 따른 Ku 대역 위성 비콘 수신기 C/N 변화 해석)

  • Park, Dae-Kil;Lee, Kyung-Soon;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.415-419
    • /
    • 2018
  • This paper predicts and measures the C/N ratio of a beacon signal transmitted from geostationary orbit satellite KorSat 5A ($113^{\circ}E$) at a ground station located in Kimpo. Based on the ground stations, we compared the rain attenuation of the zone K of ITU-R and the rain attenuation which analyzed the domestic weather information. In ITU-R, the Korean rainfall characteristics are classified into zone K, but forecasting the rainfall intensity and attenuation of three adjacent cities based on the cumulative rainfall data per minute from 2013 to 2017. The calculation of rainfall path and attenuation is based on ITU-R recommendations. The change of the C/N according to the rainfall amount was confirmed through the 2 week satellite beacon signal C/N measurement. The predicted critical C/N was decreased to 12 dB at $A_{0.3}$. During the experiment, it was confirmed that it decreased up to 8 dB according to the concentrated rainfall.

File System Design and Software Development for Correlation Result Analysis (상관결과 분석을 위한 파일 시스템 설계 및 소프트웨어 개발)

  • Oh, Se-Jin;Kan-ya, Yukitoshi;Roh, Duk-Gyoo;Yeom, Jae-Hwan;Oh, Chung-Sik;Yun, Young-Joo;Jung, Jin-Seung;Jung, Dong-Kyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.181-190
    • /
    • 2013
  • In this paper, we designed file system in order to utilize data analysis by using correlation result from Daejeon correlator including related software development. Correlation results are consisted of visibility component (amplitude and phase) of radio source, but for data analysis of correlation result, various information such as weather, radio telescope position, observation time, radio source position, source type, and receiver noise temperature are needed. In this paper, we designed file system as a directory-structure for making use of these informations at Linux system for analyzing data and developed software to make file system. To verify the effectiveness of designed file system and developed software, file system generation experiment is conducted, and then astronomers accepted that there is no severe problem for scientific analysis using designed file system.

Development of Digital Signage System for Remote Video Advertisement in OSGi Service Platform (OSGi 서비스 플랫폼에서 원격 영상광고 송출 디지털 사이니지 시스템 개발)

  • Chung, Kyung Yong;Jeong, In Jae;Lee, Young Sil
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.4
    • /
    • pp.232-237
    • /
    • 2019
  • It has recently been combined with advanced technologies such as AR and VR, and its application range is expanding to various forms of smart signage. However, until now, digital signage service that reaches us is installed in many floating populations such as bus stops, elevators, and banks and is used in the form of providing news, weather, and advertisements. In addition, large companies, government offices, and outdoor advertising companies occupy the market. The use of such services in small and medium-sized businesses and small retail stores is costly and expensive to manage. Also, it is difficult to generalize the market because services and solutions are being deployed in the market in the form of top-down. Therefore, in this paper, we proposed a digital signage system for transmitting a remote video advertisement that uses a show window in front of the store as a beam project screen for small retail stores, and can remotely set and manage and update it in OSGi service platform.

Non-hierarchical Clustering based Hybrid Recommendation using Context Knowledge (상황 지식을 이용한 비계층적 군집 기반 하이브리드 추천)

  • Baek, Ji-Won;Kim, Min-Jeong;Park, Roy C.;Jung, Hoill;Chung, Kyungyong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.3
    • /
    • pp.138-144
    • /
    • 2019
  • In a modern society, people are concerned seriously about their travel destinations depending on time, economic problem. In this paper, we propose an non-hierarchical clustering based hybrid recommendation using context knowledge. The proposed method is personalized way of recommended knowledge about preferred travel places according to the user's location, place, and weather. Based on 14 attributes from the data collected through the survey, users with similar characteristics are grouped using a non-hierarchical clustering based hybrid recommendation. This makes more accurate recommendation by weighting implicit and explicit data. The users can be recommended a preferred travel destination without spending unnecessary time. The performance evaluation uses accuracy, recall, F-measure. The evaluation result was shown 0.636 accuracy, 0.723 recall, and 0.676 F-measure.

An Implement of Fixed Obstacle Detecting RADAR Algorithm for Smart Highway (스마트하이웨이에 적합한 장애물 탐지용 레이더 알고리즘 구현)

  • Lee, Jae-Kyun;Park, Jae-Hyoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.2
    • /
    • pp.106-112
    • /
    • 2012
  • Smart Highway is the intelligent highway that improves a traffic safety, reduces incidence of traffic accidents, and supports intelligent and convenient driving environment so that drivers can drive at high speeds in safety[1]. In order to implement the highway, it is required to gather a dangerous data such as obstacle, wild animal, disabled car, etc. To provide the situation information of the highway, it has been gathered traffic information using various sensors. However, this technique has problems such as the problems of various information gathering, lack of accuracy depending on weather conditions and limitation of maintenance. Therefore, in order to provide safe driving information to driver by gathering dangerous condition, radar system is needed. In this paper, we used a developing 34.5GHz RWR(Road Watch Radar) radar for gathering dangerous information and we verified performance of obstacle detecting and resolution through field test.

Road Condition Measurement using Radar Cross Section of Radar (레이더의 유효 반사전력을 이용한 도로 상태 측정)

  • Park, Jae-Hyoung;Lee, Jae-Kyun;Lee, Chae-Wook;Lee, Nam-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.150-156
    • /
    • 2011
  • Smart Highway is a next generation highway that significantly improves a traffic safety, reduces incidence of traffic accidents, and supports intelligent and convenient driving environments so that drivers can drive at high speeds in safety. In order to implement smart highway, it is required to gather a large amount of data including conditions of a road and the status of vehicles, and other useful data. To provide situation information of highway, it has been gathered traffic information using optical sensors(CCTV, etc.). However, this technique has problems such as the problem of information gathering, lack of accuracy depending on weather conditions and limitation of maintenance. It needs radar system which has not effect on environmental change and algorithm processing technique in order to provide information for a safety driving to driver and car. In this paper, it is used radar with 9.4GHz to test performance of a road surface and developed radar system for detecting test. And we compared and analyzed a performance of data acquired from each radar through computer simulation.

Comparative Analysis of GNSS Precipitable Water Vapor and Meteorological Factors (GNSS 가강수량과 기상인자의 상호 연관성 분석)

  • Jae Sup, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.317-324
    • /
    • 2015
  • GNSS was firstly proposed for application in weather forecasting in the mid-1980s. It has continued to demonstrate the practical uses in GNSS meteorology, and other relevant researches are currently being conducted. Precipitable Water Vapor (PWV), calculated based on the GNSS signal delays due to the troposphere of the Earth, represents the amount of the water vapor in the atmosphere, and it is therefore widely used in the analysis of various weather phenomena such as monitoring of weather conditions and climate change detection. In this study we calculated the PWV through the meteorological information from an Automatic Weather Station (AWS) as well as GNSS data processing of a Continuously Operating Reference Station (CORS) in order to analyze the heavy snowfall of the Ulsan area in early 2014. Song’s model was adopted for the weighted mean temperature model (Tm), which is the most important parameter in the calculation of PWV. The study period is a total of 56 days (February 2013 and 2014). The average PWV of February 2014 was determined to be 11.29 mm, which is 11.34% lower than that of the heavy snowfall period. The average PWV of February 2013 was determined to be 10.34 mm, which is 8.41% lower than that of not the heavy snowfall period. In addition, certain meteorological factors obtained from AWS were compared as well, resulting in a very low correlation of 0.29 with the saturated vapor pressure calculated using the empirical formula of Magnus. The behavioral pattern of PWV has a tendency to change depending on the precipitation type, specifically, snow or rain. It was identified that the PWV showed a sudden increase and a subsequent rapid drop about 6.5 hours before precipitation. It can be concluded that the pattern analysis of GNSS PWV is an effective method to analyze the precursor phenomenon of precipitation.

A Study on the Coherence of the Precipitation Simulated by the WRF Model during a Changma Period in 2005 (WRF 모델에서 모의된 2005년 장마 기간 강수의 동조성 연구)

  • Byon, Jae-Young;Won, Hye-Young;Cho, Chun-Ho;Choi, Young-Jean
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • The present study uses the GOES IR brightness temperature to examine the temporal and spatial variability of cloud activity over the region $25^{\circ}N-45^{\circ}N$, $105^{\circ}E-135^{\circ}E$ and analyzes the coherence of eastern Asian summer season rainfall in Weather Research and Forecast (WRF) model. Time-longitude diagram of the time period from June to July 2005 shows a signal of eastward propagation in the WRF model and convective index derived from GOES IR data. The rain streaks in time-latitude diagram reveal coherence during the experiment period. Diurnal and synoptic scales are evident in the power spectrum of the time series of convective index and WRF rainfall. The diurnal cycle of early morning rainfall in the WRF model agrees with GOES IR data in the Korean Peninsula, but the afternoon convection observed by satellite observation in China is not consistent with the WRF rainfall which is represented at the dawn. Although there are errors in strength and timing of convection, the model predicts a coherent tendency of rainfall occurrence during summer season.

Effects of Photoperiod Treatment on Histological Changes in Testis Tissues of the Golden Hamster

  • Kang, Jae-Won;Kim, Seol-Ah;Park, Chang-Eun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • Many mammals in temperate zones are affected by the distinctive changes of the four seasons in these zones. Their reproductive status is active in the summer climate and inactive during severe winter weather. The golden hamster (Mesocricetus auratus) is seasonal breeding animal whose sexual activities are regulated by photoperoidism. The reproduction and metabolism are activated by long summer days (LD) and inhibited by short winter days (SD). After several months of SD, animals become refractory to this inhibitory photoperiod and spontaneously revert to LD-like physiology. The suprachiasmatic nuclei (SCN) house the primary circadian oscillator in mammals. Seasonal changes in the photic input to this structure control many annual physiological rhythms via SCN-regulated pineal melatonin secretion, which provides an internal endocrine signal representing photoperiod. The aim of this study was to assess the variation in the morphology of the testis in relation to the natural photoperiod in male golden hamsters. The hamsters were castrated at different weeks (2, 5, 8, and 15). The cell numbers of tubules with spermatogonia (SG), spermatocyte (SC), spermatids (ST), and spermatozoa (SZ) were recorded in each sample. The results showed that testicular regression of golden hamsters occurred in the SD-treated animals. The present investigation determines that the effects of the photoperiod on the reproduction of male golden hamsters. It was also found that the circadian period increases the rate of reproductive inhibition in animals exposed to inhibitory photoperiods.

  • PDF