• Title/Summary/Keyword: wearable air cushion

Search Result 3, Processing Time 0.022 seconds

A Study on the Effect of Primer Processing Method on the Mechanical Properties of Impact Relief Air Cushion Materials Prepared through Thermal Film Laminating (프라이머 가공 방법이 열융착 필름 라미네이팅으로 제조한 고충격 대응 에어쿠션 소재의 물성에 미치는 영향 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.34 no.3
    • /
    • pp.173-184
    • /
    • 2022
  • In this study, the TPU film was laminated on an aramid fabric or circular knits in order to implement an air cushion material that can respond to high impact forces in case of a fall and is easy to expand. To increase the bonding strength between the fabric layer and the film layer, a primer layer was formed in two ways: one for thermally bonding and laminating PET film and two for coating and aging hot melt type PUR adhesive. The tensile strength of the aramid air cushion was 2.5 times higher than that of the circular knits, but the tensile elongation of the aramid air cushion was very low compared to that of the circular knits. The tear strength of the aramid air cushion was about twice or more superior to that of the circular knits, the primer treatment method was good at A, and the peel strength was excellent at method A. The aramid air cushion was the lightest in weight. Summarizing the above results, it was best to combine the air cushion material with aramid woven fabric and primer treatment method A to cope with the high impact force applied when falling.

Study on the Applicability of the Air Cushion Material for Impact Relief through Thermal Bonding of High Strength Fabrics (고강력 직물의 열융착 라미네이팅을 통한 충격 완화용 에어쿠션 소재로의 적용 가능성 검토 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.32 no.3
    • /
    • pp.176-183
    • /
    • 2020
  • In order to study wearable air cushion materials capable of responding to massive impact in high-altitude fall situation, high tenacity woven fabrics were bonded by heat only depending on various type of thermoplastic films and then mechanical properties were measured. Tensile strength, elongation, and 100% modulus measurement results for 4 types of films show that TPU-2 has higher impact resistance and easier expansion than PET-1. After thermal bonding, the combination with the highest tensile strength was a material with a TPU-2 film for nylon and a PET-2 film for PET, so there was a difference by type of fabric. The tear strength of the bonded materials were increased compared to the fabric alone, which shows that durability against damage such as tearing can be obtained through film adhesion. All of the peel strengths exceeded the values required by automobile airbags by about 5 times, and the TPU-2 bonded fabric showed the highest value. The air permeability was 0 L/dm2 /min. For both the film and the bonded material, which means tightness between the fabric and the film through thermal bonding. It is expected to be applied as a wearable air cushion material by achieving a level of mechanical properties similar to or superior to that of automobile airbags through the method of bonding film and fabric by thermal bonding.

Study on the High-Strength Air-Cushion Fabrics for Impact-Relief Application Prepared through Primer Coating and Thermal Film Laminating (프라이머 코팅과 열융착 필름 라미네이팅을 통해 제조한 충격 완화용 고강력 에어쿠션 직물에 관한 연구)

  • Kim, Ji Yeon;Kim, Hun Min;Min, Mun Hong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.269-279
    • /
    • 2021
  • In this study, the laminating of TPU film after coating of primer adhesive on the fabrics was applied in order to secure the strength to withstand a fall from a higher altitude by increasing the adhesion between the fabric and the film layer. It seems that the fineness of the yarn and the weave construction have a greater effect than the type of the laminating films. The order of superiority of the laminated fabrics by film type and thickness was the same for 1000 denier and 210 denier fabrics, and the tendency was consistent with the order of superiority in the film properties and peel strength tests. The tear strength of laminating fabrics increased three to four times for 1000 denier fabrics compared to the fabric alone, but it decreased by 2 times for the 210 denier fabrics. Summarizing the above results, it is most appropriate to combine 1000d fabric with three types of laminating films(100~200㎛ thickness) of A(0.2T) or B(0.15T) or D(0.1T) considering the air pressure resistance, the impact resistance during the fall, and the durability against damage during use.