• Title/Summary/Keyword: wear-corrosion

Search Result 408, Processing Time 0.034 seconds

Reliability Analysis of UT Measurement for Evaluating Pipe Wall Thinning in Nuclear Power Plants (배관감육 평가를 위한 UT 측정 신뢰도 분석)

  • Yun, Hun;Hwang, Kyeong-mo
    • Corrosion Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.129-134
    • /
    • 2012
  • UT(Ultrasonic Test), one of the non-destructive tests, is the most common thickness measurement method for evaluating the wear rate in NPPs(Nuclear Power Plants). UT is used widely because it is easy and safe for use. However some amount of error inevitably occurs in attempting to measure the thickness. The error, that could make the thickness data thicker or thinner, may affect estimation of wear rate in pipes. NPPs are composed of a lot of pipes and components. Some of them are tested to check the current status during RFO(Re-Fueling Outage). Reliability analysis of UT is essential for evaluating pipe wear rate and establishing the long-term management plan in NPPs. This paper reviewed the cause of error occurrence and presented the UT data reliability analysis method. Also, this paper shows the application result of reliability analysis to the UT data acquired in NPPs.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

Characteristics of Micro-hardness and Corrosion of Electroless Nickel-Phosphorus Plating depending on Heat Treatment

  • Jung Seung-Jun;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.4
    • /
    • pp.196-199
    • /
    • 2000
  • Electroless plating is the desirable surface treatment method which is being widely used to all kinds of material such as requiring corrosion resistance, wear resistance and conductivity, especially plating of nonconductive material. Electroless nickel deposit has particular characteristics including non-magnetic property, amorphous structure, wear resistance, corrosion protection and thermal stability. In this study, electroless nickel plating was studied with an change in hardness and corrosion resistance of electroless nickel-phosphorus deposit depending on heat treatment. The highest hardness value was obtained by heat treatment at $500^{\circ}C$ Corrosion resistance of deposit, which had been heated at $300^{\circ}C$, was excellent when it was immersed in 1M $H_2SO_4$ solution for 60 hrs.

HVOF spray coating of WC-metal powder for the improvement of friction, wear and corrosion resistance of magnetic bearing shaft material of turbo blower (터보불로워 용 회전체 주축 소재의 마찰, 마모 및 부식 저항 향상을 위한 WC-metal 분말의 초고속화염용사코팅)

  • Joo, Y.K.;Yoon, J.H.;Cho, T.Y.;Chun, H.G.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • High velocity oxy-fuel (HVOF) spray coating of WC-metal powder (powder) was carried out to improve the resistances of friction, wear and corrosion of magnetic bearing shaft material Inconel718 (In718) of turbo blower. A micron sized WC-metal powder (86.5% WC, 9.5% Co 4% Cr) was coated onto In718 surface using HVOF thermal spraying. During the spraying, the binder metals and alloy such as Co, Cr and Co-Cr alloy were molten and a small portion of WC particles were partially decomposed to $W_2C$ and free carbon at above its decomposition temperature of $1250^{\circ}C$. The free carbon and excessively sprayed oxygen formed carbon oxide gases, resulting a porous coating of porosity of $2.2{\pm}0.3%$. The surface hardness of substrate increased approximately three times from 400 Hv of In718 to $1260{\pm}30Hv$ of the coating The friction coefficients of the coating were approximately $0.33{\pm}0.03$ at $25^{\circ}C$ and $0.26{\pm}0.03$ at $450^{\circ}C$. These values were smaller than those of In718 substrate at both temperatures due to the lubrication from the free carbon and the cobalt oxide debris. The corrosion resistance of the coating was higher than that of In718 both in salt water of 3.5% NaCl and acid of 1 M HCl solutions, on the contrary, it was lower in base solution of 1 M NaOH. According to this study, the HVOF WC-metal powder coating is recommended for the durability improvement of magnetic bearing shaft of turbo blower.

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.121-125
    • /
    • 2000
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90 $\pm$ 2$\^{C}$,25 wt% NaOH ). All of the specimens, ① Si$_3$N$_4$, ② 3Y-TZP and ③ 3Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-HIPed, and then polished up to 0.02 $\mu$mRa of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress of 3.16 GPa and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$ and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_2$N$_4$. 3Y-TZP specimens alloyed with 5 wt% CeO$_2$ were not worn after aging and no phase transformation occurred while aging.

The Effect of Corrosion of Rolling Bearing Ceramics in Alkalic Solution on the Rolling Wear and Hardness (알카리용액에서 구름베어링용 세라믹스의 부식이 구름마모 및 경도에 미치는 영향)

  • 최인혁;김상근;박창남;윤대현;신동우
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.154-159
    • /
    • 1999
  • Silicon nitride ceramic has been verified as an excellent rolling bearing material because of its high strength and outstanding rolling fatigue life properties. However under some corrosive circumstances it showed drawbacks such as hardness reduction and severe wear caused by corrosion. In this work, the variations of the rolling wear and hardness of three kinds of ceramics were studied for the specimen aged 15 days in alkali water (90$\pm$2$^{\circ}C$, 25 wt% NaOH). All of the specimens, \circled1Si$_3$N$_4$, \circled23Y-TZP and \circled33Y-TZP alloyed with 5 wt% CeO$_2$, were sintered and post-Hipped, and then polished up to 0.02 ${\mu}{\textrm}{m}$Ra of surface roughness. Rolling wear tests were conducted by MJ type rolling fatigue life tester under the initial theoretical maximum contact stress or 3.76 Gra and the spindle speed of 1,000 rpm. Spindle oil was used as a lubricant. The specimens were not worn before aging. For the specimen aged in alkali water, Si$_3$N$_4$and 3Y-TZP were worn by rolling wear tests, and hardness was decreased. While aging the specimens, the phase was transformed from tetragonal to monoclinic in 3Y-TZP and the microstructure change occurred in Si$_3$N$_4$. 3Y-TZP alloyed with 5 wt% CeO$_2$specimens were not worn after aging and no phase transformation occurred while aging.

  • PDF

OVERVIEW OF FRETTING CORROSION IN ELECTRICAL CONNECTORS

  • PARK Y. W.;JUNG J. P.;LEE K. Y.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.75-82
    • /
    • 2006
  • Fretting corrosion widely known as a degradation mechanism refers to the combination of fretting wear and corrosion such as oxidation. This paper critically reviews the works published previously on fretting corrosion of electrical connectors. Various experimental approaches such as testing machines, material selection, testing environments, acceleration testing techniques and preventing methods are addressed. Future research prospects are suggested.

A Study on Corrosive Wear Characteristics and the Mechanism of Austempered Low-Alloy Ductile Iron (오스템퍼링 한 저합금구상흑연주철의 부식마멸특성 및 그 기구에 관한 연구)

  • 박흥식;진동규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1404-1411
    • /
    • 1993
  • This study was undertaken to investigate the corrosive wear charateristics upon various transformation condition of austempered low-alloy ductile cast iron in corrosive environments against mating specimen made of the hardened SM45C. The corrosive wear test was carried out by rubbing the annular surface of two test pieces in distilled water and aqueous solution at constant sliding speed of 0.5m/s. In severe wear region, the corrosive wear rate Wc increased hastily with NaCl concentration owing to intermetallic adhesion but Wc went down slowly in mild wear region due to lubricating effect of the corrosion product. The critical sliding distance decreased with increasing NaCl concentration due to increased generation rate of the corrosion product and the specific corrosive wear rate has maximum in 1% NaCl aqueous solution at mild wear region. With the variation of matrix, the corrosive wear resistance of the fine acicular bainite was higher than that of coarse upper bainite because of reducing the local cell reaction by carbides. A growth in volume fraction of retained austenite in matrix increased the Wc due to soften surface, but has a declining tendency of Wc in mild wear region.

A Study on Wear and Corrosion Properties of Plasma Carburized Austenitic Stainless Steel (플라즈마 침탄된 오스테나이트계 스데인리스강의 마모 및 부식 특성에 관한 연구)

  • Shin, Dong-Myung;Lee, Chang-Youl;Lee. Kyung-Sub
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.776-783
    • /
    • 2002
  • Austenitic stainless steel (STS304) has been carburized using glow discharge plasma and its microstructure, wear resistance and corrosion property have been investigated. A repeat boost-diffuse carburizing was used as an effective plasma carburizing method. The effective case depth of the plasma carburized specimens was increased with the carbon concentration at the surface area. The specimens prepared by 3 hours plasma carburizing under $600^{\circ}C$ did not have the standard hardness for the effective case depth, but the specimen prepared by 11 hours plasma carburizing at $500^{\circ}C$ had nearly the same hardness with the specimen plasma carburized for 3 hours at $800^{\circ}C$. The wear resistance increased with temperature but the corrosion properties of the specimens prepared over $600^{\circ}C$ decreased rapidly due to the grain boundary sensitization. However, the specimen plasma carburized for 11 hours at $500^{\circ}C$ had nearly the same wear resistance with the specimen plasma carburized for 3 hours at $800^{\circ}C$ without deterioration of corrosion property. This could be resulted from the fact that the microstructure of the specimen plasma carburized for 11 hours at $500^{\circ}C$ was composed of martensite and austenite, because a partial martensite transformation was occurred only in the specimen plasma carburized for 11 hours at 50$0^{\circ}C$.

Development of High Corrosion Resistant $Mo_2NiB_2$ Boride Base Cermets for Plastic Injection Molding Machine Parts

  • Hirata, Kourou;Iwanaga, Kengo;Yamasaki, Yuji;Takagi, Ken-ichi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.111-112
    • /
    • 2006
  • Injection molding of corrosive super engineering plastics and engineering plastics with various fillers is conducted under severe conditions and causes corrosion and wear problems. We have developed $Mo_2NiB_2$ boride base cermets, which have excellent corrosion-and wear-resistances, and tried to apply them into plastic molding machine parts. In this paper, the effects of V substitution for Cr on the mechanical properties, corrosion resistance and microstructure of Ni-5.0B-51.0Mo-(17.5-X)Cr-XV (mass%) model cermets were investigated. Both transverse rupture strength (TRS) and hardness increased monotonically with increasing V content and reached 2.94GPa and $87.2R_A$ at 10.0%V, respectively. The improvements of TRS and hardness were attributed to microstructural refinement.

  • PDF