• 제목/요약/키워드: wear simulation

검색결과 249건 처리시간 0.027초

한, 일산 연삭 숫돌의 연삭 성능 평가에 관한 연구 (A study on the Grinding Ability Evaluation of Grinding Wheel made in Korea and Japan)

  • 강재훈
    • 한국생산제조학회지
    • /
    • 제5권1호
    • /
    • pp.51-57
    • /
    • 1996
  • Although the system for establishing grinding operation standards mainly depends on the simulation method, it is desirable to obtain highly reliable grinding data and to develop experimental technology, And, it also needs to modify the simulation models if the simulation results do not coincide with special situation due to the difference of grinding machine, wheels and workpiece materials. If simple tests are carried out to evaluate these specificity, the reliability and utility of the system can be raised higher. Therefore, it is required for evaluating wheel ability and confirming the validity of the experimental methods as well as the possibility of exchanging the experimental data between Korea and Japan to preform several kinds of grinding experiments. In this paper, experiments of cylindrical plunge grinding were conducted using the wheels of the same specification made by three typical grinding wheel manufacturers both in Korea and Japan, respectively. The grinding power consumption grinding force, the ground surface roughness, and wheel wear were measured under the same dressing the grinding conditions. The average value and standard deviation of the experiment results were calculated to compared the grinding performance of the wheels made in both countries. The experiment results show that the grinding wheel performance of Korea's is nearly equal to that of Japan's for general purpose of grinding operation. In conclusion, it is possible to exchange the experimental data between Korea and japan.

  • PDF

3D virtual clothing simulation을 활용한 여자 중학생의 브랜드교복 패턴비교 및 체형별 교복 패턴개발 (Comparison of Brand-name School Uniform Patterns for Middle School Girls and Development of School Uniform Patterns by Students' Body Shape, Using 3D Virtual Clothing Simulation)

  • 신장희
    • 한국의상디자인학회지
    • /
    • 제24권2호
    • /
    • pp.117-129
    • /
    • 2022
  • In terms of junior high school girls' growth patterns during early adolescence, unlike childhood when relatively balanced growth patterns are found and high school years in which the normal adult body type is almost reached, junior high school girls display imbalanced and rapid growth. In fact, diverse size changes by body part occur with a significant difference among individuals. Therefore, it has been difficult for junior high school students to select their exact size when buying a school uniform. This study attempted to develop winter blouse and skirt patterns reflecting the latest comfortable and active school uniform trends, using middle school girl avatars of various body shapes. Skirt and blouse pattern-drawing methods and margins differed. Based on such results, research prototypes were prepared. Then, virtual wear prospective drawings, clothing pressure, and appearance were assessed by body shape. Skirts were assessed with 22 factors while blouses were analyzed with 25 factors. Then, correlations between skirts and blouses were analyzed. According to the analysis, the reason why the dart & pleats position and margin were rated low was confirmed. In a virtual wear assessment on skirt patterns by body shape, a significant difference was found in all categories except for position of the hip circumference, margin of the hips, width of the skirt, and appropriateness of waist line position. The virtual wear assessment on the blouse patterns by body shape also revealed a significant difference in all categories but fit and shape pf the back part. In blouses, a significant difference was observed around shoulders and waist in type 1 and around the belly in type 2. On the contrary, for skirts, a significant difference was found around the hips and waists in type 1 and type 2. Therefore, these factors should be considered in making blouses and skirts. The above results suggested that skirt and blouse patterns should vary by body shape. It is anticipated that there should be further studies comparing brand-name school uniforms for high school girls and school uniforms by body shape.

Comparison of retentive force and wear pattern of Locator® and ADD-TOC attachments combined with CAD-CAM milled bar

  • Chae, Sung-Ki;Cho, Won-Tak;Choi, Jae-Won;Bae, Eun-Bin;Bae, Ji-Hyeon;Bae, Gang-Ho;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권1호
    • /
    • pp.12-21
    • /
    • 2022
  • PURPOSE. The purpose of this study was to investigate changes in retention and wear pattern of Locator® and ADD-TOC attachments on a digital milled bar by performing chewing simulation and repeated insertion/removal of prostheses in fully edentulous models. MATERIALS AND METHODS. Locator (Locator®; Zest Anchors Inc., Escondido, CA, USA) was selected as the control group and ADD-TOC (ADD-TOC; PNUAdd Co., Ltd., Busan, Republic of Korea) as the experimental group. A CAD-CAM milled bar was mounted on a master model and 3 threaded holes for connecting a bar attachment was formed using a tap. Locator and ADD-TOC attachments were then attached to the milled bar. Simulated mastication and repeated insertion/removal were performed over 400,000 cyclic loadings and 1,080 insertions/removals, respectively. Wear patterns on deformed attachment were investigated by field emission scanning electron microscopy. RESULTS. For the ADD-TOC attachments, chewing simulation and repeated insertion/removal resulted in a mean initial retentive force of 24.43 ± 4.89 N, which were significantly lower than that of the Locator attachment, 34.33 ± 8.25 N (P < .05). Amounts of retention loss relative to baseline for the Locator and ADD-TOC attachments were 21.74 ± 7.07 and 8.98 ± 5.76 N (P < .05). CONCLUSION. CAD-CAM milled bar with the ADD-TOC attachment had a lower initial retentive force than the Locator attachment. However, the ADD-TOC attachment might be suitable for long-term use as it showed less deformation and had a higher retentive force after simulated mastication and insertion/removal repetitions.

가상 착의 시뮬레이션을 이용한 래글런 소매 패턴 변화에 따른 착의 시 정량적 분석 가능성 모색 (A Study on Based on the Possibility of Quantitative Analysis using Virtual Clothing Simulation according to Raglan Sleeve Pattern Types)

  • 이예진;이병철
    • 한국생활과학회지
    • /
    • 제21권2호
    • /
    • pp.299-314
    • /
    • 2012
  • The purpose of this study was to explore effects of pattern alteration using a virtual clothing simulation approach in combination with 3D analysis software. Three raglan sleeves of different patterns were worn by an avatar using virtual clothing simulation with silk and cotton as the test fabrics. It was observed that the silhouette and hemline shape were affected differently based on raglan sleeve pattern and fabric type. By examining clothing pressure distribution, the cotton fabric designs and pattern shapes provided for a variety of influences on armhole and bust regions as well as the back sleeve area. For representative locations, cross section circumstance, cross section area, and volume were measured by using 3D analysis and the resulting correlation between the 2D and 3D data were investigated. Among different fabrics, there was little difference between the 2D and 3D clothing surface area. However, when using 3D analysis, clothing volume was significantly affected by different fabrics and pattern types. By simultaneously adopting the virtual simulator and 3D analysis, quantitative assessment of virtual clothing simulation was successfully conducted. In light of the results of this study, the resulting methodology is expected to be used as a comprehensive evaluation tool for virtual clothing simulation wear testing.

Load capacity simulation of an agricultural gear reducer by surface heat treatment

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Joo, Jai-Hwang;Rhee, Joong-Yong;Choi, Young-Soo;Ha, Jong-Woo;Park, Young-Jun;Hong, Sun-Jung;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제43권4호
    • /
    • pp.656-664
    • /
    • 2016
  • Gear reducers are widely used for various agricultural machinery applications such as greenhouses, tractors, and agricultural vehicles. However, thermal deformation and surface pitting at gear tooth flank frequently occur in gear reducers due to high torque. Thus, surface heat treatment of gears is required to improve wear and fatigue resistance. The objective of this study was to simulate the load capacity of the agricultural gear reducer. The simulation was performed for the following three surface heat treatment methods: untreated gears, nitriding heat treatment, and induction hardening method, those mostly used for agricultural gear reducers. The load capacity of the gear reducer was simulated using the safety factor, limit bending stress, and limit contact stress of the gear. The simulation of the load capacity was conducted using KISSsoft commercial software for gear analysis. The main results of simulation test were as follows: first, the nitriding heat treatment resulted in the highest safety factor for bending stress, which was increased about 77% from those of the untreated gears. Second, the induction hardening was the highest safety factor for contact stress, which was increased about 150% from those of the untreated gears. The safety factor for contact stress of the induction hardening was increased about 64% from those of the nitriding heat treatment. The study result suggested that the surface heat treatments could enhance load capacity and that the method of surface heat treatment should be determined based on simulation results for appropriate use scenarios.

Thermal wetting 현상이 탄소나노튜브-금속박막 계면의 응착력에 미치는 영향에 관한 분자 시뮬레이션 연구 (A Molecular Simulation on the Adhesion Control of Metal Thin Film-Carbon Nanotube Interface based on Thermal Wetting)

  • 이상훈;김현준
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.8-12
    • /
    • 2023
  • This study presents a molecular simulation of adhesion control between carbon nanotube (CNT) and Ag thin film deposited on silicon substrate. Rough and flat Ag thin film models were prepared to investigate the effect of surface roughness on adhesion force. Heat treatment was applied to the models to modify the adhesion characteristics of the Ag/CNT interface based on thermal wetting. Simulation results showed that the heat treatment altered the Ag thin film morphology by thermal wetting, causing an increase in contact area of Ag/CNT interface and the adhesion force for both the flat and rough models changed. Despite the increase in contact area, the adhesion force of flat Ag/CNT interface decreased after the heat treatment because of plastic deformation of the Ag thin film. The result suggests that internal stress of the CNT induced by the substrate deformation contributes in reduction of adhesion. Contrarily, heat treatment to the rough model increases adhesion force because of the expanded contact area. The contact area is speculated to be more influential to the adhesion force rather than the internal stress of the CNT on the rough Ag thin film, because the CNT on the rough model contains internal stress regardless of the heat treatment. Therefore, as demonstrated by simulation results, the heat treatment can prevent delamination or wear of CNT coating on a rough metallic substrate by thermal wetting phenomena.

표준화환자를 이용한 호흡기감염 시뮬레이션 교육이 간호대학생의 지식, 임상수행능력에 미치는 효과 (Effects of Respiratory Infectious Disease Simulation-based Education using Standardized Patient for Nursing Student's of the Knowledge, Clinical Nursing Competency)

  • 허정;윤영주
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.435-442
    • /
    • 2023
  • 본 연구의 목적은 간호대학생의 호흡기 감염질환 지식과 임상수행에 대해 표준화 환자를 활용한 시뮬레이션 교육의 효과를 분석하는 것이다. 간호학과 4학년생 112명을 대상으로 2020년 3월 2일부터 6월 15일까지 표준화 환자를 활용하여 전염성 호흡기계 환자 간호를 위한 단일군 전후 설계이다. 호흡기 감염병 교육 프로그램 '폐 감염병 지식', '손 씻기', '마스크 착용', '환자 및 간병인에게 마스크 착용 유도', '정맥주사' '3way 주사', '외과적 무균술', '소독 의료기기', '오염된 린넨 관리', '감염자 관리 매뉴얼' 등 10개 교육 과제 수행이며 강의, 기술 훈련, 표준화된 환자를 이용한 시뮬레이션, 디브리핑으로 구성되었다. 표준화된 환자를 이용한 시뮬레이션 교육 후 호흡기 감염질환에 대한 학생의 지식과 임상수행능력이 유의미한 향상을 보였으며, 다양한 감염관리 실습에 활용될 것으로 기대한다.

Fracture resistance of implant- supported monolithic crowns cemented to zirconia hybrid-abutments: zirconia-based crowns vs. lithium disilicate crowns

  • Elshiyab, Shareen H;Nawafleh, Noor;Ochsner, Andreas;George, Roy
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권1호
    • /
    • pp.65-72
    • /
    • 2018
  • PURPOSE. The aim of this in vitro study was to investigate the fracture resistance under chewing simulation of implant-supported posterior restorations (crowns cemented to hybrid-abutments) made of different all-ceramic materials. MATERIALS AND METHODS. Monolithic zirconia (MZr) and monolithic lithium disilicate (MLD) crowns for mandibular first molar were fabricated using computer-aided design/computer-aided manufacturing technology and then cemented to zirconia hybrid-abutments (Ti-based). Each group was divided into two subgroups (n=10): (A) control group, crowns were subjected to single load to fracture; (B) test group, crowns underwent chewing simulation using multiple loads for 1.2 million cycles at 1.2 Hz with simultaneous thermocycling between $5^{\circ}C$ and $55^{\circ}C$. Data was statistically analyzed with one-way ANOVA and a Post-Hoc test. RESULTS. All tested crowns survived chewing simulation resulting in 100% survival rate. However, wear facets were observed on all the crowns at the occlusal contact point. Fracture load of monolithic lithium disilicate crowns was statistically significantly lower than that of monolithic zirconia crowns. Also, fracture load was significantly reduced in both of the all-ceramic materials after exposure to chewing simulation and thermocycling. Crowns of all test groups exhibited cohesive fracture within the monolithic crown structure only, and no abutment fractures or screw loosening were observed. CONCLUSION. When supported by implants, monolithic zirconia restorations cemented to hybrid abutments withstand masticatory forces. Also, fatigue loading accompanied by simultaneous thermocycling significantly reduces the strength of both of the all-ceramic materials. Moreover, further research is needed to define potentials, limits, and long-term serviceability of the materials and hybrid abutments.

고막이식형 마이크로폰을 위한 이식형 인공중이 적응 피드백 제거기 구현 (An Adaptive Feedback Canceller for Fully Implantable Hearing Device Using Tympanic Membrane Installed Microphone)

  • 김태윤;김명남;조진호
    • 한국멀티미디어학회논문지
    • /
    • 제19권2호
    • /
    • pp.189-199
    • /
    • 2016
  • Many implantable hearing aids are being developed as alternatives to conventional hearing aids which has inconveniences for use and social stigma that make hearing-impaired people avoid to wear it. Particularly, the fully-implantable middle ear hearing devices (F-IMEHD) are being actively studied for mixed or sensorineural hearing impaired people. In development of F-IMEHD, the most difficult problem is improving the performance of implantable microphone. Recently, Cho et al. have studied the tympanic membrane installed microphone which has better sensitivity and is easier to operate on patient than the microphone implanted under the skin. But, it may cause howling problem due to the feedback signal via oval window and ossicle chain from the transducer on round window in the middle ear cavity, therefore, a feedback canceller is necessary. In this paper, we designed NLMS (normalized least mean square) adaptive feedback canceller for F-IMEHD with tympanic membrane installed microphone and a transducer implemented at round window, and computer simulation was performed to verify its operation. The designed adaptive feedback canceller has a delay filter, a 64 point FIR fixed filter and a 8-tap adaptive FIR filter. Computer simulation of the feedback path is modeled by using the data obtained through human cadaver experiment.

비휘발성 메모리 기반 캐시의 쓰기 작업 최적화를 위한 캐시 시뮬레이터 설계 (Cache Simulator Design for Optimizing Write Operations of Nonvolatile Memory Based Caches)

  • 주용수;김명회;한인규;임성수
    • 대한임베디드공학회논문지
    • /
    • 제11권2호
    • /
    • pp.87-95
    • /
    • 2016
  • Nonvolatile memory (NVM) is being considered as an alternative of traditional memory devices such as SRAM and DRAM, which suffer from various limitations due to the technology scaling of modern integrated circuits. Although NVMs have advantages including nonvolatility, low leakage current, and high density, their inferior write performance in terms of energy and endurance becomes a major challenge to the successful design of NVM-based memory systems. In order to overcome the aforementioned drawback of the NVM, extensive research is required to develop energy- and endurance-aware optimization techniques for NVM-based memory systems. However, researchers have experienced difficulty in finding a suitable simulation tool to prototype and evaluate new NVM optimization schemes because existing simulation tools do not consider the feature of NVM devices. In this article, we introduce a NVM-based cache simulator to support rapid prototyping and evaluation of NVM-based caches, as well as energy- and endurance-aware NVM cache optimization schemes. We demonstrate that the proposed NVM cache simulator can easily prototype PRAM cache and PRAM+STT-RAM hybrid cache as well as evaluate various write traffic reduction schemes and wear leveling schemes.