• Title/Summary/Keyword: wear particle

Search Result 278, Processing Time 0.024 seconds

히스토그램에 의한 마멸분의 형태분포에 관한 연구 (Study on Shape Distribution of Wear Particles with Histogram)

  • 조연상;문성동;박흥식
    • 대한기계학회논문집A
    • /
    • 제32권11호
    • /
    • pp.963-969
    • /
    • 2008
  • The wear particles are relative to the failure and the life of machine elements directly. But it is not laid down to calculate shape parameters of wear particle. To analyze a variation of distributed characteristics of wear particles on moving conditions, its shape parameters such as diameter and roundness were calculated the quantitative values by digital image processing, and had to be defined the effective method of using those data. Up to the present, the shape parameters have been used simply into the average values. But these values are not effective to analyze a variation of distributed characteristics of occurred wear particles on moving conditions. In this study, the relative histograms of shape parameters of wear particles were used for the purpose of analyzing the distribution of wear particles in various conditions. The results showed that the relative histogram of shape parameters can be effectively represented to study a wear mechanism.

6061AI 복합재료 마모특성에 미치는 SiC입자 강화재 체적분율의 영향 (Effect of Volume fraction of SiC Particle Reinforcement on the Wear Properties of 6061AI Composites)

  • 김헌주
    • 열처리공학회지
    • /
    • 제15권2호
    • /
    • pp.82-92
    • /
    • 2002
  • In the present investigation wear behavior of the 6061AI composites reinforced with 5, 10, 20% SiC particles for dry sliding against a SM45C counterface was studied as a function of load and sliding velocity. Sliding wear tests were conducted at two loads(19.6 and 49N) and three sliding velocities(0.2, 1 and 2 m/sec) at constant sliding distance of 4000 m using pin-on-disk machine under room temperature. Presence of SiC reinforcement particles in the composites has displayed a transition from mild to severe wear at relatively higher applied load and sliding velocity compare to that of the matrix metal. As the volume fraction of SiC particles increased, the transition moved to a more severe wear conditions. Eventually, mild wear prevailed at a most severe wear conditions in this study, that was 49N load and 2 m/sec sliding velocity in 20% SiC particle/6061AI composite.

취성소재 연삭마멸에서의 측면균열에 관한 연구 (Lateral Crack in Abrasive Wear of Brittle Solids)

  • 안유민;박상신;최상현
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.46-51
    • /
    • 1999
  • An analytical model about lateral crack occurring in abrasive wear of brittle solids is developed. Stress field around the lateral crack and stress intensity factor at the crack tip are analytically modeled. Abrasive wear by abrasive particle is experimentally studied. In soda-lime glass, it is observed that chipping by lateral crack occurs and produces the greatest material removal when normal load applied by the abrasive particle is about 1.5∼3.0 N. The prediction of lateral crack length from the model is compared with the experimentally measured length in soda-lime glass.

마멸입자가 운동이력이 다른 금속재료의 마찰 마멸현상에 미치는 영향

  • 황동환;김대은;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.807-810
    • /
    • 1995
  • The effects of weae particles on the friiction and wear behavior of metals in dry sliding conditions are presented. The tribological test were performed using pure metal specimens which were selected based on their degrees of compatibility and hardness ratio. Friction and wear experiments were conducted using both pin-on-disk and reciprocating pin-on-plate type tribotesters to investigate the effect of motion history. Experimental results show that in the case of dry sliding the frictional behavior observed during pin-on-disk test differed form that of pin-on-reciprocator test for the given set of material pairs. The friction coefficient and wear rate were found to be higher for the pin-on-disk tests. It is suspected that the sliding motion of the pin affects the wear particle dynamics, which in turn influences the frictional behavior. The effect of material pair properties seemed to be relatively smaller than that of wear particles. The results of this paper is expected to aid in the design of mechanical systems for best tribological performance.

  • PDF

화상처리에 의한 기계윤활 운동면의 마멸분 형태해석 (Morphological Anaylsis of Wear Debris for Lubricated Moving Machine Surfaces by Image Processing)

  • 박흥식;전태옥;서영백;김형자
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.72-78
    • /
    • 1996
  • This paper was undertaken to analyze the morphology of wear debris generated from lubricated moving machine surfaces by image processing. The lubricati, ng wear test was performed under different experimental conditions using the wear test device made in our laboratory and wear test specimen of the pin on disk type wear rubbed in paraffme series base oil, by varying applied load, sliding distance. The four parameters (50% volumetric diameter, aspect, roundness and reflectivity) to describe the morphology have been developed and outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology in machine condition monitoring, thus to overcome many of the difficulties with current methods and to facilitate wider use of wear particle analysis in machine condition monitoring.

금속복합재료와 고분자복합재료의 마모 특성 비교 (Comparison of Wear Property Between Metal and Polymer Matrix Composites)

  • 김재동
    • 수산해양교육연구
    • /
    • 제28권6호
    • /
    • pp.1875-1881
    • /
    • 2016
  • The wear behavior for the two types of composites, those are epoxy matrix composites filled with silica particles and aluminium matrix composites filled with SiC particles, were compared to investigate the wear mechanism for these composites. Especially, the effect of the volume fraction for the epoxy matrix composites and the particle size for the aluminium matrix composites according to the apply load and sliding velocity were investigated. Wear tests of the pin-on-disc mode were carried out and followed by scanning electron microscope observations for the worn surface. The addition of the fillers in the composites were improved the wear resistance significantly and changed the wear mechanism for the both composites. These results were identified by the observation of the worn surface after testing.

윤활운동면의 작동조건에 따른 마멸분 화상해석 (Image Analysis of Wear Debris on Operating Condition of the Lubricated Moving Surface)

  • 서영백;박흥식;전태옥;이광영
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.143-149
    • /
    • 1997
  • This paper was undertaken to do image analysis of wear debris on operating condition of the lubricated moving surfaces. This lubricating wear test was performed under different experimental conditions using the wear test device was made in our laboratory and wear testing specimen of the pin on dist type was rubbed in paraffine series base oil, by materials, varying applied load, sliding distance. The four shape parameters (50% volumetric diameter, aspect, roundness and reflectivity) to describe wear debris have been developed and are outlined in the paper. A system using such techniques promises to obviate the need for subjective, human interpretation of particle morphology for machine condition monitoring, this to overcome many of the difficulties with current methods and facilitating wider use of wear particle analysis in machine condition monitouing.

  • PDF

무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성 (Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by a Pressureless Metal Infiltration Process)

  • 김재동;정순억;김형진
    • 한국해양공학회지
    • /
    • 제17권1호
    • /
    • pp.55-60
    • /
    • 2003
  • The effect of size and volume fraction of ceramic particles, with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by the pressureless infiltration process. The metal matrix composites exhibited about 5.5 - 6 times the wear resistance compared with AC8A alloy at high sliding velocity, and by increasing the particle size and decreasing the volume fraction, the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity, linearly : whereas, metal matrix composites indicated more wear loss than AC8A alloy at the slow velocity region. However, a transition point of wear loss was found at the middle velocity region, which shows the minimum wear loss. Further, wear loss at the high velocity region exhibited nearly the same value as the slow velocity region. In terms of wear mechanism, the metal matrix composites generally exhibited abrasive wear at slow to high sliding velocity; however, AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

무가압함침법으로 제조된 입자강화 금속복합재료의 마모특성 (Wear Characteristics of Particulate Reinforced Metal Matrix Composites Fabricated by Pressureless Metal Infiltration Process)

  • 김재동;정순억;김형진
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.379-384
    • /
    • 2002
  • The effect of size and volume fraction of ceramic particles with sliding velocity on the wear properties were investigated for the metal matrix composites fabricated by pressureless infiltration process. The particulate metal matrix composites exhibited about 5.5 - 6 times of excellent wear resistance compared with AC8A alloy at high sliding velocity, and as increasing the particle size and decreasing the volume fraction the wear resistance was improved. The wear resistance of metal matrix composites and AC8A alloy exhibited different aspects. Wear loss of AC8A alloy increased with sliding velocity linearly. whereas metal matrix composites indicated more wear loss than AC8A alloy at slow velocity region, however a transition point of wear loss was found at middle velocity region which show the minimum wear loss, and wear loss at high velocity region exhibited nearly same value with slow velocity region. In terms of wear mechanism, the metal matrix composites exhibited the abrasive wear at slow to high sliding velocity generally, however AC8A alloy showed abrasive wear at low sliding velocity and adhesive and melt wear at high sliding velocity.

  • PDF

Effects of Test Temperature on the Reciprocating Wear of Steam Generator Tubes

  • Hong, J.K.;Kim, I.S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.379-380
    • /
    • 2002
  • Steam generators (S/G) of pressurized water reactors are large heat exchangers that use the heat from the primary reactor coolant to make steam in the secondary side for driving turbine generators. Reciprocating sliding wear experiments have been performed to examine the wear properties of Incoloy 800 and Inconel 690 steam generator tubes in high temperature water. In present study, the test rig was designed to examine the reciprocating and rolling wear properties in high temperature (room temperature - $300^{\circ}C$) water. The test was performed at constant applied load and sliding distance to investigate the effect of test temperature on wear properties of steam generator tube materials. To investigate the wear mechanism of material, the worn surfaces were observed using scanning electron microscopy. At $290^{\circ}C$, wear rate of Inconel 690 was higher than that of Incoloy 800. It was assumed to be resulted from the oxide layer property difference due to the a\loy composition difference. Between 25 and $150^{\circ}C$ the wear loss increased with increasing temperature. Beyond $150^{\circ}C$, the wear loss decreased with increasing temperature. The wear loss change with temperature were due to the formation of wear protective oxide layer. From the worn surface observation, texture patterns and wear particle layers were found. As test temperature increased, the proportion of particle layer increased.

  • PDF