• Title/Summary/Keyword: wear particle

Search Result 279, Processing Time 0.028 seconds

Characteristics in Densities and Shapes of Various Particles Produced by Friction between Tire Tread and Road Surface

  • Jung, Uiyeong;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.92-99
    • /
    • 2022
  • A large amount of particles on the roads is produced by friction between the vehicles and the road surface and by inflow from outside. The type of these particles affects the abrasion behavior of tire tread. In this study, road dust collected at a bus stop was separated by size, and the particles with sizes of 106-212 mm were analyzed. The particles were separated by density using NaI and NaBr aqueous solutions with densities in the range of 1.10-1.80 g/cm3 with the 0.10 g/cm3 interval. In the road dust sample, the following particle types were found: tire-road wear particles (TRWPs), asphalt pavement wear particles (APWPs), plant-related particles (PRPs), road paint wear particles (RPWPs), and plastic particles (PPs). The densities of TRWPs, APWPs, PRPs, and RPWPs were 1.20-1.80, >1.60, >1.10, and >1.40 g/cm3, respectively, while PPs were found in all density ranges. Additionally, many small mineral particles were observed on the particles. Order of the relative content of the particles was PRP > TRWP > APWP ~ RPWP > PP. APWPs that were stuck to TRWP could be removed by chloroform treatment. The shapes of the particles were characterized using their magnified images.

A Study on Fabrication Conditions of Al-SiCp Composites by Squeeze Casting (Squeeze Casting에 의한 Al-SiCp 복합재료의 제조 조건에 관한 연구)

  • Kim, Sug-Won;Woo, Kee-Do;Han, Sang-Won
    • Journal of Korea Foundry Society
    • /
    • v.14 no.5
    • /
    • pp.471-479
    • /
    • 1994
  • Al-2%Si-2%Mg alloy containing SiC particle in 20, $70{\mu}m$ were prepared by mean of squeeze casting with various pressure 50, 100, 150 and 220MPa respectively. The specimens were made by casting into $50{\Phi}{\times}100{\ell}$ mold under various squeeze conditions(pressures, pressurizing temperature, particle sizes). Mechanical properties(hardness, tensile strength, elongation and wear characteristics) were evaluated at room temperature with those various fabrication factors. It became feasible to make favorable Al-SiCp composite free from casting defects by the injection of Ar gas during melting and 100MPa pressure squeeze casting. However, pressure of 50MPa was not sufficient to avoid completely porosity formation as a result of precessing and shrinkage during solidification. As the particle size is smaller and the squeeze pressure is higher, the hardness and tensile strength at room temperature are higher. Cell size became smaller gradually with increase of squeeze pressure. With increase of squeeze pressure(MPa), wear behaviors of those composites were changed from adhesive into abrasive wear, and the tendency of above behavior became outstanding with increasing sliding speed. The chemical reaction(4Al+3SiC${\rightarrow}$$Al_4C_3+3Si$) is more accelerated at interface between SiCp and matrix with increase of squeeze pressure. Therefore $Al_4C_3$ intercompound and Si peak intensity is increased at interface.

  • PDF

Addition of nano particle to increase the cavitation resistance of urethane (나노입자 첨가를 통한 우레탄수지의 캐비테이션 저항 향상)

  • Lee, Iksoo;Kim, Nackjoo;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.679-687
    • /
    • 2014
  • In this study, a new paint which is able to resist the cavitation erosion is tried to be developed by using urethane added with nano particles such as multi-wall and single-wall carbon nano tube and spherical and fiber type graphite. The new paint synthesized was characterized with physical properties and resistivity to cavitation erosion($t_{50}$). Among nano particles, fiber type graphite($t_{50}$ 292min) showed high hardness and wear resistance compared with spherical type($t_{50}$ 182min). For carbon nano tube, single-wall type($t_{50}$ 286min) was higher than multi-wall type in wear resistance. Fiber-type graphite was the best nano-particle for paint with resistivity to cavitation erosion. In the application test of paint, the manually painted sample showed surface with smooth but the surface of sample prepared with spray was not smooth. During spray, dust was fixed on the surface.

Effect of Intermediate Layer Coated Diamond Particles on Performance of Diamond Tool (다이아몬드 입자에 형성된 중간층이 다이아몬드 공구 성능에 미치는 영향)

  • Son, Kyung-Sik;Lee, Jung-Hoon;Choi, Yong-Je;Jung, Uoo-Chang;Chung, Won-Sub
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.216-222
    • /
    • 2013
  • In order to improve the performance of electrodeposited diamond-nickel composite, surface modification of diamond particles was carried out using powder immersion reaction assisted coating (PIRAC). Titanium and chromium were selected as coating elements, which are known as carbide former. With respect to the powder elements, various phases were formed on diamond; metallic Ti and TiC for Ti powder, $Cr_3C_2$ for Cr powder, and TiC and $Cr_3C_2$ for Ti-Cr mixed powder. Surface modified diamond particle showed higher specific surface area, especially Ti coating induced considerable increase of specific surface area. The increase of specific surface area suggests increase of surface roughness, and that was confirmed by surface observation using FE-SEM. In addition, wear properties of diamond-nickel composite including surface modified diamonds were improved, and Ti coated diamond showed the highest performance. The wear property of diamond-nickel composite is dependent on adhesion strength between diamond particle and nickel layer. Therefore, surface modification of diamond particle by PIRAC increasing surface roughness is effective to improve the properties of diamond-nickel composite.

Three Dimensional Finite Element Analysis of Particle Reinforced Metal Matirx Composites Considering the Thermal Residual Stress and the Non-uniform Distribution of Reinforcements (금속복합재료의 열잔류 응력과 강화재의 불규칙 분산 상태를 고려한 3차원 유한 요소 해석)

  • 강충길;오진건
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.199-209
    • /
    • 2000
  • Particles reinforced MMCs have higher specific modulus, higher specific strength, better properties at elevated temperatures and better wear resistance than monolithic metals. But the coefficient of thermal expansion(CTE) of Al6061 is 5 times larger than that of SiCp. The discrepancy of CTE makes some residual stresses inside of MMCs. This work investigates Si$C_p$/Al6061 composites at high temperatures in the microscopic view by three-dimensional elasto-plastic finite element analyses and compares the analytical results with the experimental ones. The theoretical model is not able to consider the nonuniform shape of particle. So the shape of particle is assumed to be perfect global shape. And also particle distribution is not homogeneous in experimental specimen. It is assumed to be homogeneous in simulation model. The type of particle distribution is face-centered cubic array(FCC array). Furthermore, non-homogeneous distribution is modeled by combination of several volume fractions.

  • PDF

Wear Resistance of Al Alloy Matrix Composites Using Porous Iron Aluminide-$SiC_p$ Preforms (Iron Aluminide-$SiC_p$ 혼합 예비성형체를 사용한 Al합금기 복합재료의 내마모 특성)

  • Cha, Jae-Sang;Oh, Sun-Hoon;Choi, Dap-Chun
    • Journal of Korea Foundry Society
    • /
    • v.23 no.1
    • /
    • pp.30-39
    • /
    • 2003
  • Porous hybrid preforms were fabricated by reactive sintering using the compacts consisting of SiC particles, Fe and Al powders. Squeeze casting processing was employed to produce the composite in which the matrix phase is Al-Si7Mg. The microstructural change and wear resistance of the composites were investigated in terms of an amount of SiC particles. The wear loss was increased with increasing the contact pressure in the alloy containing SiC particles coated with Cu. The most drastic change was found to the specimen tested at 2.5 MPa of contact pressure. Concerning the alloys containing SiC particles coated with Ni-P, a drastic increase in the wear loss exhibited at 2 MPa of contact pressure in those alloys containing 4 and 8 wt. % of SiC particles coated with Ni-P. In the alloy containing 16 wt. % a proportional increase in wear loss was observed to the change of contact pressure. With respecting to the sliding velocity, the wear loss of the alloy containing SiC particles coated with Cu increased at the initial stage of wear process and then decreased. Similar result was found in the alloys containing SiC particles coated with Ni-P. On the basis of the present results obtained, it was found that wear resistance of the alloys tested was improved to show in the order of the alloy reinforced by coated SiC particles > by uncoated SiC particles > by intermetallic compound without SiC particles.

Tribology of Clay Bonded Silicon Carbide

  • Lee, Kyunghee;Kim, Honggi
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.226-230
    • /
    • 1996
  • A small amount of fine particle graphite was added to $\alpha$-SiC and $\beta$-SiC having certain particle distributions, and they were mixed clay and frit. After forming, they were sintered at 140$0^{\circ}C$ for 3 hours. Tribological properties of sintered $\alpha$-SiC-$\beta$-SiC-graphite-clay (frit) system showed that kinetic friction coefficient was 0.108, specific wear rate was 1.3${\times}10^-8\;mm^2$.$kgf^1$, and torque was 0.01kgf.cm at the wrench torque of 100 kgf.cm.

  • PDF

Improvement of Wear Resistance and Formation of Si Alloyed Layer on Aluminum Alloy by PTA Process (PTA법에 의한 Al 합금표면의 Si 합금층 형성과 내마모성 개선)

  • ;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.134-143
    • /
    • 1997
  • The formation of thick alloyed layer with high Si content have been investigated on the surface of Al alloy (A5083) plate by PTA process with Si powder. Hardening characteristics and wear resistance of alloyed layer was examined in relation to the microstructure of alloyed layer. Thick hardened layer in mm-order thickness on the surface of A5083 plate can be formed by PTA process with wide range of process condition by using Si powder as alloying element because of eutectic reaction of Al-Si binary alloy. High temperature and rapid solidification rate of molten pool, which are features of PTA process, enable the formation of high Si content alloyed layer with uniform distribution of fine primary Si paticle. High plasma arc current was beneficial to make the alloyed layer with smooth surface appearance in wide range of powder feeding rate, because enough volume of molten pool was necessary make alloyed layer. Uniform dispersion of fine primary Si particle with about 30${\mu}{\textrm}{m}$ in particle size can be obtained in layer with Si content ranging from 30 to 50 mass %. Hardness of alloyed layer increased with increasing Si content, but increasing rate of hardness differed with macrostructure of alloyed layer. Wear resistance of alloyed layer depended on $V_{si}$(volume fraction of primary Si) and was remarkably improved to two times of base metal at 20-30% $V_{si}$ without cracking, but no more improvement was obtained at larger $V_{si}$.

  • PDF

Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness (강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향)

  • Lee, JunHyuk;Park, TaeJo
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

Fabrication and Wear Behavior of Nano-sized Metal Particle Dispersed Al2O3 Nanocomposites (나노크기 금속입자가 분산된 Al2O3 나노복합재료의 제조 및 마모거동)

  • Oh Sung-Tag;Yoon Se-Joong;Jeong Young-Keun
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.503-507
    • /
    • 2005
  • Microstructure and wear behavior of A1203-based nanocomposites with Cu and Ni-Co dispersions were investigated. $Al_2O_3/Cu$ and $Al_2O_3/Ni-Co$ nanocomposites were fabricated by hydrogen reduction and sintering method using metal oxide and metal nitrates. The nanocomposites showed increased mechanical properties compared with monolithic $Al_2O_3$. In particular, high toughness and hardness were measured for the $Al_2O_3/Ni-Co$ nanocomposite consolidated by spark plasma sintering. A minimum value of wear coefficient comparable to the monolithic $Al_2O_3$ was obtained for $Al_2O_3/Ni-Co$ nanocomposite. Wear behavior is discussed in terms of microstructure and mechanical properties of nanocomposites