• Title/Summary/Keyword: wear depth

Search Result 414, Processing Time 0.03 seconds

A Study on Engine Valve and Seat Insert Wearing Depending on Speed Change (속도변화에 따른 엔진 밸브 및 시트 인서트의 마모에 관한 연구)

  • 전경진;홍재수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.14-20
    • /
    • 2003
  • The minimization of valve and seat insert wear is a critical factor in the pursuit of engine performance improvement. In order to achieve this goal, we have developed a new simulator, which can generate and control high temperatures up to $900^{\circ}C$ and various speeds up to 80Hz during motion, just like an actual engine. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. The objective of this work focuses on the different degrees of wear from two different test speeds (10Hz & 25Hz). For this study, the temperature of the outer surface of the seat insert was controlled at $350^{\circ}C$, the cycle number was 2.1$\times$106, and the test load was 1960N. The wear depth and surface roughness were measured before and after the testing using a confocal laser scanner. It was found that a higher speed (25Hz) causes more wear than a lower speed (10Hz) under identical test conditions (temperature, cycle number and test load). In the wear mechanism adhesive wear, shear strain and abrasive wear could be observed.

Development of Technique Predicting of the Wear of DCI Roll Using Carbon Steel in Hot Rod Rolling Process (탄소강 선재 압연공정의 DCI 롤 마멸 예측 기술의 개발)

  • Kim, Dong-Hwan;Kim, Byeong-Min;Lee, Yeong-Seok;Yu, Seon-Jun;Ju, Ung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1736-1745
    • /
    • 2002
  • The objective of this study is to predict the roll wear in hot rod rolling process. In this study hot rod rolling process for round and oval passes has been investigated. In order to predict the roll wear, the wear model is reformulated as an incremental form and then wear depth of roll is calculated at each deformation step on contact area using the results of finite element analysis, such as relative sliding velocity and normal pressure at contact area. Archard's wear model was applied to predict the roll wear. To know the thermal softening of DCI (Ductile Cast Iron) roll according to operating conditions, high temperature micro hardness test is executed and a new wear model has been proposed by considering the thermal softening of DCI roll expressed in terms of the main tempering parameter curve. 3D wear program developed in this study might be used for adjusting the gap of rolls to set up a suitable rolling schedule for keeping dimensional tolerance of the product.

Simulation of the Initial Wear and Lubrication Performance of Marine Engine Components (선박엔진 부품의 성능 향상을 위한 초기 마모 및 윤활 해석 연구)

  • Cha, Su-Bin;Lee, Hyang;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.227-234
    • /
    • 2022
  • Recently, the demand for improving energy efficiency has rapidly increased because of the growing concerns over environmental issues. In this work, the tribo-test and simulation for the initial wear and lubrication performance were performed for the piston pin in the small end system of the connecting rod of a marine engine, to obtain useful data for improving the efficiency of marine engine systems. In addition, a diamond-like carbon (DLC) coating was applied to the piston pin to explore feasibility of eliminating the bush used in the system. The initial wear and lubrication characteristics between the uncoated piston pin and bush were compared with that between the DLC-coated piston pin and connecting rod in the tribo-test. The simulation for the wear and lubrication performance according to the wear progression was conducted based on the data obtained from the test. The wear characteristics were quantitatively assessed by the wear depth and wear volume, and the lubrication performance was characterized with the change of pressure and minimum oil film thickness with respect to the crank angle. It was found that the DLC-coated piston pin may provide better initial wear characteristics and lubrication performance. The results of this work may provide fundamental information for marine engines with improved efficiency.

PLASMA SOURCE ION IMPLANTATION OF NITROGEN AND CARBON IONS INTO CO-CEMENTED WC

  • Han, Seung-Hee;Lee, Yeon-Hee;Lee, Jung-Hye;Kim, Hai-Dong;Kim, Gon-Ho;Kim, Yeong-Woo;Cho, Jung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.220-220
    • /
    • 1999
  • In plasma source ion implantation, the target is immersed in the plasma and repetitively biased by negative high voltage pulses to implant the extracted ions from plasma into the surface of the target material. In this way, the problems of line-of-sight implantation in ion-beam ion implantation technique can be effectively solved. In addition, the high dose rate and simplicity of the equipment enable the ion implantation a commercially affordable process. In this work, plasma source ion implantation technique was used to improve the wear resistance of Co-cemented WC. which has been extensively used for high speed tools. Nitrogen and carbon ions were implanted using the pulse bias of -602kV, 25 sec and at various implantation conditions. The implanted samples were examined using scanning Auger electron spectroscopy and XPS to investigate the depth distributions of implanted ions and to reveal the chemical state change due to the ion implantation. The implanted ions were found to have penetrated to the depth of 3000$\AA$. The wear resistance of the implanted samples was measured using pin-on-disc wear tester and the wear tracks were examined with alpha-step profilometer.

  • PDF

Assessment of Cutting Performance for SM45C using CNC Lathe (CNC에 의한 SM45C 선삭시 절삭성능 평가)

  • 황경충
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.104-116
    • /
    • 1998
  • This paper provides a review of the performance for SM45C using the CNC lathe. Under the constant cutting area, the tool wear for large feed rate is more than the small feed rate, and the progress goes more rapidly as the cutting speed is increased. This is caused by the friction between the workpiece and the bite. The average cutting force increases as the feedrate increases, and decreases as the cutting speed increases. This is because the effective rake/shear angle becomes smaller as the feedrate becomes larger. The higher is the cutting speed and the aspect ratio (the ratio for depth of cut to feedrate), the lower is the cutting force and the surface roughness. Also, for the optimal selection of the cutting conditions, many experimental graphical data were obtained. That is, the cutting force, the tool life, and the surface roughness were measured and investigated as the depth of cut and the feedrate changed. And the size effect was examined as the depth of the cut varied.

  • PDF

Wear Analysis of Engine Bearings at Constant Shaft Angular Speed during Firing State - Part II: Calculation of the Wear on Journal Bearings (파이어링 상태의 일정 축 각속도에서 엔진베어링의 마모 해석 - Part II: 저어널베어링 마모 계산)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.34 no.4
    • /
    • pp.146-159
    • /
    • 2018
  • This paper presents a wear analysis procedure for calculating the wear of journal bearings of a four-strokes and four-cylinder engine operating at a constant angular crank shaft speed during firing conditions. To decide whether the lubrication state of a journal bearing is in the possible region of wear scar, we utilize the concept of the centerline average surface roughness to define the most oil film thickness scarring wear (MOFTSW) on two rough surfaces. The wear volume is calculated from the wear depth and wear angle, determined by the magnitude of each film thickness on a set of oil films with thicknesses lower than the MOFTSW at every crank angle. To calculate the wear volume at one contact, the wear range ratio during one cycle is used. The total wear volume is then determined by accumulating the wear volume at every contact. The fractional film defect coefficient, asperity load sharing factor, and modified specific wear rate for the application of the mixed-elasto-hydrodynamic lubrication regime are used. The results of this study show that wear occurs only at the connecting-rod big-end bearing. Thus, simulation results of only the big-end bearing are illustrated and analyzed. It is shown that the wear volume of each wear scar group occurs consecutively as the crank angle changes, resulting in the total accumulated wear volume.

COMPARISON OF WEAR RESISTANCE AMONG RESIN DENTURE TEETH OPPOSING VAR10US RESTORATIVE MATERIALS (수복재료에 대합되는 의치용 레진치의 마모저항성 비교)

  • Lee, Chul-Young;Chung, Moon-Kyu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.3
    • /
    • pp.313-327
    • /
    • 1999
  • The aim of this study was to compare wear resistance of resin denture teeth opposing various restorative materials. The wear resistance of conventional acrylic resin teeth(Trubyte Biotone) and three high-strength resin teeth(Bioform IPN, Endura, SR-Orthosit-PE) opposing different restorative materials(gold alloys, dental porcelain, composite resin) was compared. Wear tests were conducted with a sliding-induced wear testing apparatus which applied 100,000 strokes to the specimen in a mesio-distal direction under conditions of 100 stroke/min and constant loading of 1Kgf/tooth. Wear resistance of the resin denture teeth was evaluated by the following criteria : 1) wear depth, 2) weight loss, and 3) SEM observation. Results were as follows. 1. When opposed to gold alloys and composite resin, high-strength resin teeth showed superior wear resistance compared to acrylic resin teeth. But, in cases opposing dental porcelain, differences between the wear of the high-strength and acrylic resin teeth were not statistically significant (p<0.05). 2. When comparing wear resistance among high-strength resin teeth, opposing gold alloys, Endura was slightly more resistant and while in cases opposing dental porcelain, SR-Orthosit-PE was showed to be slightly resistant(p<0.05). 3. The wear of high-strength resin teeth was greater by 5 to 7 times when opposing porcelain and 2 to 3 times when opposing composite resin compared to gold alloys(p<0.05). 4. SEM observations of the wear surface showed that wear of resin teeth opposing gold alloys is a fatigue type of wear and wear of resin teeth opposing dental porcelain is fatigue and abrasion type of wear. Trubyte Biotone showed more severe fatigue type of wear than high-strength resin teeth. In conclusion, the use of dental porcelain should seriously be considered as restorative material in cases opposing resin denture teeth and improvement seems to be needed on resin teeth in the areas of wear resistance.

  • PDF

Fretting Wear Simulation of Press-Fitted Shaft with Finite Element Analysis and Influence Function Method (유한요소해석과 영향함수법을 이용한 압입축의 프레팅 마모해석)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.54-62
    • /
    • 2008
  • In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge were compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

Contact Condition of Zircaloy-4 Tube and Support and Transition of Slip Regime (지르칼로이-4 튜브 및 지지부의 접촉조건과 미끄럼 상태의 천이)

  • 김형규;강흥석;윤경호;송기남
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.81-88
    • /
    • 2001
  • To study the influence of the shape of contacting bodies (especially the end profile) on slip regime, wear test is conducted in the case of the contact between tube and support. Two different end profiles of the support are used such as truncated wedge and rounded punch. During the test, 10, 30 and 50 N are applied as normal force and slip displacement varies between 10-200 $\mu\textrm{m}$. The tube and the support specimens are made of Zircaloy-4 and a specially designed wear tester is used. Tests are carried out in air at room temperature. Wear on the tube is examined by measuring microscope. Partial and gross slip regimes are classified from the observed wear shape. Surface roughness tester is also used to measure the wear depth and contour, from which wear volume is evaluated. The transition from partial to gross slip is also investigated by investigating the considerable increase of wear volume. From the result, the boundary between the partial and the gross slip is newly determined in the conventional fretting map for the present specific contact configuration. Since the transition is related with the amount of energy dissipation from the contact surface so is wear, it is regarded that wear can be restrained by designing a proper shape of support.

  • PDF

Modification of Thin Film Friction and Wear Models with Effective Hardness

  • Kim, Chang-Lae;Kim, Hae-Jin
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.320-323
    • /
    • 2020
  • Thin film coatings are commonly exploited to minimize wear and optimize the frictional behavior of various precision mechanical systems. The enhancement of thin film durability is directly related to the performance maximization of the system. Therefore, a fine approach to analyze the thin film wear behavior is required. Archard's equation is a representative and well-developed law that defines the wear coefficient, which is the probability of creating wear particles. A ploughing model is a commonly used model to determine the friction force during the abrasive contact. The equations demonstrate that the friction force and wear coefficient are inversely proportional to the hardness of the material. In this study, Archard's equation and ploughing models are modified with an effective hardness to minimize the gap between the experimental and numerical results. It is noted that the effective hardness is the hardness variation with respect to the penetration depth owing to the substrate effect. The nanoindentation method is utilized to characterize the effective hardness of Cu film. The wear coefficient value considering the effective hardness is more than three times higher than that without considering the effective hardness. The friction force predicted with the effective hardness agreed better with the results obtained directly from the friction force detecting sensor. This outcome is expected to improve the accuracy of friction and wear amount predictions.