• 제목/요약/키워드: wear coefficient

검색결과 780건 처리시간 0.028초

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Slitting Knife의 손상에 미치는 마모의 영향 (The effect of wear on the damage of slitting knife)

  • 남기우;김철수;안석환
    • 동력기계공학회지
    • /
    • 제20권4호
    • /
    • pp.5-11
    • /
    • 2016
  • This study analyzed the damage to a slitting knife after cutting steel sheets. Damages to the structure were observed and wear tests were conducted. In addition, the degradation on the damaged and undamaged parts was compared with a micro Vickers hardness test. Weibull statistical analysis was carried out in order to evaluate the reliability of the micro Vickers hardness measured data. Spalling of the edge portion occurred by degradation during use over a long period. Rough parts in the specimens were caused by damage because the slitting knife was used for 1 year. The friction coefficient and wear loss at the damaged parts of the knife edge were slightly larger from shock due to repetitive cutting operation. The micro Vickers hardness followed a two-parameter Weibull probability distribution.

표면경화에 의한 고강도 알루미늄 합금의 마모 특성에 관한 연구 (A Study on Wear Characteristics of High strength aluminum alloys by Surface Hardening)

  • 이남수;허선철;이광영;박원조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1601-1606
    • /
    • 2007
  • In order for high strength aluminum alloys to be used in transportation systems and the aerospace industry, excellent mechanical and physical properties are required. In particular, excellent anti-abrasion property is indispensable for parts that require driving force. In general, surface treatment technologies such as high frequency heat treatment, gas solid carburizing, surface rolling, shot peening are used as ways of improving anti-abrasion property. Among various surface treatment technologies, this research chose shot peening processing for Al7075-T6, which is well known as representative high-strength alloy steel. Wear characteristics were compared and analyzed after shot peening processing with shot ball velocities of 40m/s and 70m/s in order to investigate the effects of shot peening processing on wear characteristics.

  • PDF

$Fe_2{O_3}$가 첨가된 지르코니아계 용사코팅층의 마모마찰 특성 (Tribological Behavior of the Plasma Sprayed Fe$_2$O$_3$Added Zirconia Based Coatings)

  • 신종한;임대순;안효석
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.84-90
    • /
    • 2000
  • High Temperature wear behavior of plasma sprayed zirconia coatings containing up to 10 mol% of Fe$_2$O$_3$ were investigated. The wear test results showed that the addition of Fe$_2$O$_3$ particles to zirconia improved the wear resistance and lowered the coefficient of friction. Optimum concentration of Fe$_2$O$_3$ was about 5 mol%. Similar degradation behavior was observed at about 40$0^{\circ}C$ for both zirconia and Fe$_2$O$_3$ added zirconia coatings. The results indicated that stabilization of tetragonal phase and changes in mechanical properties such as hardness and toughness were responsible for tribological behavior of plasma sprayed zirconia contain Fe$_2$O$_3$.

탄소와 구리의 마찰 및 마모에 관한 분자 동역학 시뮬레이션 (Molecular Dynamics Simulation of Friction and Wear Behavior Between Carbon and Copper)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제20권2호
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, friction and wear behaviors between monocrystalline, defect-free copper and carbon on the atomic scale are investigated by using 2-dimensional molecular dynamics simulation. It is assumed that all interatomic forces are given by Morse potential. The deformation of carbon is assumed to be neglected and vacuum condition is also assumed. Average friction and normal forces for various surface conditions, various scratch speeds and scratch depths are obtained from simulations. Changes of wear behaviors for various scratch speeds and surface conditions are investigated by observing snapshots in scratch process. The effects of surface conditions, scratch speeds, and scratch depths on the friction force, normal force, and friction coefficient are also investigated.

용사법에 의한 Al/Al-SiC 복합재료의 제조 (Fabrication of Al/Al-SiC Composites by Thermal Spray Process)

  • 김균택;김영식
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.93-98
    • /
    • 2006
  • Metal matrix composites(MMCs) reinforced with ceramic particulates are receiving increasing attention because their high specific strength, low coefficient of thermal expansion and excellent wear resistance. Especially, Al-based composites(AMCs) have been widely applied for the aerospace and automotive industries. Such composites are mainly fabricated by the cast, powder metallurgy and infiltration process. In this study, SiC particulate reinforced Al-based composites were fabricated by thermal spray process and their wear behavior were investigated. Composites with different spray parameter were fabricated by using flame spray apparatus. Microstructure and wear behavior of the composites were observed by scanning electron microscope(SEM) and electron probe micro-analysis(EPMA).

  • PDF

산화크롬/몰리브덴 복합 플라즈마 용사 코팅의 마찰, 마모 특성 연구 (A study on friction and wear properties of plasma-sprayed $Cr_2O_3/Mo$ composite coatings)

  • 여인웅;안효석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.17-24
    • /
    • 1998
  • Plasma-sprayed coatings were obtained by spray-dried $Cr_2O_3$ powder with and without Mo addition. A reciprocal type tribo-tester was employed to examine friction and wear behavior of the specimens at room temperature. The composition and the worn surface of coated specimens were observed by XRD and SEM. The results showed that friction Coefficient of the Mo added specimens were lower than one of $Cr_2O_3$ specimen. But $Cr_2O_3$ specimen had a lower wear loss. Protecting layer were observed at the worn surface of coated specimens with Mo addition.

  • PDF

Free Silicon 함량에 따른 Si-SiC 복합재료의 마찰 마모 특성 (Effect of the Amount of Free Silicon on the Tribological Properties of Si-SiC)

  • 김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제31권5호
    • /
    • pp.520-528
    • /
    • 1994
  • An investigation was carried out to understand the effect of the amount of free silicon on the tribological properties of Si-SiC. The specimens of dense Si-SiC composites with various amount of free silicon were fabricated in the temperature of 175$0^{\circ}C$ after molding under various pressure. Wear properties were measured by ball-on-plate wear tester under the constant weight of 4 Kgf at constant sliding speed of 500 mm/sec in water. As the result, the Rockwell hardness and fracture strength of Si-SiC composites remained nearly constant up to 16.62 vol% of free silicon in the Si-SiC microstructure. The Si-SiC composites containing the free silicon of 16.62 vol% was considered to be prominent in the tribological properties, which had the friction coefficient of 0.08 and the specific wear rate of 2.4$\times$10-8$\textrm{mm}^2$Kgf-1. The analysis of the wear surface indicated the complicated processes occuring on the surface such as fine polishing, abrasion, microfracture.

  • PDF

Cr-계 및 WC/C 코팅 SCM415강의 마찰•마모 특성에 관한 연구 (A Study on the Friction and Wear Characteristics of Cr-interrelatedness & WC/C Coating SCM4l5 Steel)

  • 장정환;김해지;김남경;장기;류성기
    • 한국기계가공학회지
    • /
    • 제8권4호
    • /
    • pp.122-128
    • /
    • 2009
  • The purpose of this study is to show the friction and wear characteristics on the vapor deposited coating layers on the SCM415 steel. In this research, frictional wear characteristic of coating materials such as CrN, AlCrN, WC/C was investigated under room temperature, normal air pressure and nothing lubricating condition. Therefore this study carried out research on the friction coefficient, micro hardness(Hv), roughness, EPMA on the vapor deposited coating layers on the SCM415 steel.

  • PDF

음극아크 이온 플레이팅법에 의한 공구강상의 TiN 피막의 내마모 특성에 관한 연구 (A Study on the Wear Resistance Behaviors of TiN Films on Tool Steels by Cathode Arc Ion Plating Method)

  • 김강범;정창준;백영남
    • 한국표면공학회지
    • /
    • 제28권6호
    • /
    • pp.343-351
    • /
    • 1995
  • Titanium nitride films have been prepared on various substrates (silicon wafer, HSS) by cathode arc ion plating process to measure microhardness, adhesion and wear-resistant behaviors by changing the substrate bias voltages (0∼-300V), thickness and roughness. Microhardnesses were measured by micro vickers hardness tester, the adhesion strengths were evaluated by acoustic signals through the scratch test with incremental applied load. As the substrate bias voltages were increased, the {111} orientation was predominant, the microhardnesses and adhesion strengths of tool steel were observed to be stronger than those of without subatrate bias voltage. Adhesion strengths of the substrate bias were 4-7 times higher than those of without the substrate bias, confirmed by SEM with EDX. Wear resistances were used pin-on-disk tribotester and TiN costing reduced the abrasive wear. As the substrate bias was increased, the weight loss and the friction coefficient was decreased.

  • PDF