• Title/Summary/Keyword: weakly factorial ring

Search Result 2, Processing Time 0.014 seconds

SOME EXAMPLES OF WEAKLY FACTORIAL RINGS

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.319-323
    • /
    • 2013
  • Let D be a principal ideal domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and $R_n=D[X]/(X^n)$ for an integer $n{\geq}1$. Clearly, $R_n$ is a commutative Noetherian ring with identity, and hence each nonzero nonunit of $R_n$ can be written as a finite product of irreducible elements. In this paper, we show that every irreducible element of $R_n$ is a primary element, and thus every nonunit element of $R_n$ can be written as a finite product of primary elements.

SOME EXAMPLES OF ALMOST GCD-DOMAINS

  • Chang, Gyu Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.601-607
    • /
    • 2011
  • Let D be an integral domain, X be an indeterminate over D, and D[X] be the polynomial ring over D. We show that D is an almost weakly factorial PvMD if and only if D + XDS[X] is an integrally closed almost GCD-domain for each (saturated) multiplicative subset S of D, if and only if $D+XD_1[X]$ is an integrally closed almost GCD-domain for any t-linked overring $D_1$ of D, if and only if $D_1+XD_2[X]$ is an integrally closed almost GCD-domain for all t-linked overrings $D_1{\subseteq}D_2$ of D.