• 제목/요약/키워드: weak structure

검색결과 1,107건 처리시간 0.025초

Algorithm for solving fluid-structure interaction problem on a global moving mesh

  • Sy, Soyibou;Murea, Cornel Marius
    • Coupled systems mechanics
    • /
    • 제1권1호
    • /
    • pp.99-113
    • /
    • 2012
  • We present a monolithic semi-implicit algorithm for solving fluid-structure interaction problem at small structural displacements. The algorithm uses one global mesh for the fluid-structure domain obtained by gluing the fluid and structure meshes which are matching on the interface. The continuity of velocity at the interface is automatically satisfied and the continuity of stress does not appear explicitly in the global weak form due to the action and reaction principle. At each time step, we have to solve a monolithic system of unknowns velocity and pressure defined on the global fluid-structure domain. Numerical results are presented.

Lattice Deformation and Electronic Structure of the $C_{60}{^+}$ Cation

  • 이기학;이한명;전희자;박성수;이왕로;Park, T. Y.;Xin Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권5호
    • /
    • pp.452-457
    • /
    • 1996
  • The effects caused by the ionization on the electronic structure and geometry on C60 are studied by the modified Su-Schriffer-Heeger (SSH) model Hamiltonian. After the ionization of C60, the bond structure of the singly charged C60 cation is deformed from Ih symmetry of the neutral C60 to D5d, C1, and C2, which is dependent upon the change of the electron-phonon coupling strength. The electronic structure of the C60+ cation ground state undergoes Jahn-Teller distortion in the weak electron-phonon coupling region, while self-localized states occur in the intermediate electron-phonon region, but delocalized electronic states appear again in the strong electron-phonon region. In the realistic strength of the electron-phonon coupling in C60, the bond structure of C60+ shows the layer structure of the bond distortion and a polaron-like state is formed.

Department of Mathematics, Dongeui University

  • Yoon, Suk-Bong
    • 대한수학회보
    • /
    • 제38권3호
    • /
    • pp.527-541
    • /
    • 2001
  • We find the necessary and sufficient conditions for the smash product algebra structure and the crossed coproduct coalgebra structure with th dual cocycle $\alpha$ to afford a Hopf algebra (A equation,※See Full-text). If B and H are finite algebra and Hopf algebra, respectively, then the linear dual (※See Full-text) is also a Hopf algebra. We show that the weak coaction admissible mapping system characterizes the new Hopf algebras (※See Full-text).

  • PDF

Cyclic testing of weak-axis column-tree connections with formation of plastic hinge at beam splice

  • Oh, Keunyeong;Chen, Liuyi;Hong, Sungbin;Yang, Yang;Lee, Kangmin
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1039-1054
    • /
    • 2015
  • The purpose of this study was to evaluate the seismic performance of weak-axis column-tree type connections used in steel moment frames. These connections are composed of a shop-welded and fieldbolted steel structure and can improve welding quality. On this basis, column-tree type connections are widely used in steel moment resisting frames in Korea and Japan. In this study, splices designed with a semirigid concept regarding the seismic performance of column-tree connections were experimentally evaluated. The structures can absorb energy in an inelastic state rather than the elastic state of the structures by the capacity design method. For this reason, the plastic hinge might be located at the splice connection at the weak-axis column-tree connection by reducing the splice plate thickness. The main variable was the distance from the edge of the column flange to the beam splice. CTY series specimens having column-tree connections with splice length of 600 mm and 900 mm were designed, respectively. For comparison with two specimens with the main variable, a base specimen with a weak-axis column-tree connection was fabricated and tested. The test results of three full-scale test specimens showed that the CTY series specimens successfully developed ductile behavior without brittle fracture until 5% story drift ratio. Although the base specimen reached a 5% story drift ratio, brittle fracture was detected at the backing bar near the beam-to-column connection. Comparing the energy dissipation capacity for each specimen, the CTY series specimens dissipated more energy than the base specimen.

Influence of external structure and internal stacking on wind load characteristics of large-span spherical shell structure

  • Xiaobing Liu;Anjie Chen;Qun Yang;Bin Feng;Xuedong Tian
    • Wind and Structures
    • /
    • 제39권3호
    • /
    • pp.191-205
    • /
    • 2024
  • To investigate the wind load characteristics of a large-span spherical shell structure, a rigid model pressure test was conducted in a wind tunnel laboratory. The study aimed to examine the impact of various external structures and internal stacking forms on the wind loads of a spherical shell structure in a practical engineering project. This project features two adjacent spherical structures, each spanning 130 m and standing 67 m tall. These two structures are connected by trestles and a transfer station. Variations in the shape factor and the integral force coefficient of the structure were compared and analyzed under different test cases. The results indicate that when two structures are arranged in series, with the adjacent structure positioned upstream, the shape factor of the structure is most affected, resulting in a significant reduction effect at the bottom of the windward surface. Compared to the external structure, the impact of various internal stacking forms on the shape factor of the structure is relatively weak. The adjacent structure significantly improves the wind resistance of the main structure. The integral force coefficient of the structure reaches its peak when internal stacking is full and is at its lowest when there is no internal stacking.

750kW 나셀커버 구조해석 및 설계 (Analysis and Design of 750kW Nacelle Cover)

  • 박재현;방조혁;박진일;류지윤
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2008
  • The major function of the nacelle cover is protecting the inside equipments. Therefore, it is required not only sufficient strength and stability but also light weight. In this paper, design loads are calculated according to the GL Wind guideline Ed. 2003. To ensure the structural safety, a composite structure is selected. The structural design is processed by two steps which are preliminary design and detail design. In the preliminary design step, a structural analysis is performed with initial thickness, 5mm. As reviewing above analysis results, weak regions of the nacelle cover reinforced using the spar cap structure which is same as the blade structure. In the analysis model, the support structure is connected with the nacelle cover and analyzed its structural safety at the same time.

  • PDF

Seismic Capacity Design and Retrofit of Reinforced Concrete Staggered Wall Structures

  • Kim, Jinkoo;Choi, Younghoo
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.285-300
    • /
    • 2017
  • This study investigates the seismic performance of a staggered wall structure designed with conventional strength based design, and compares it with the performance of the structure designed by capacity design procedure which ensures strong column-weak beam concept. Then the seismic reinforcement schemes such as addition of interior columns or insertion of rotational friction dampers at the ends of connecting beams are validated by comparing their seismic performances with those of the standard model structure. Fragility analysis shows that the probability to reach the dynamic instability is highest in the strength designed structure and is lowest in the structure with friction dampers. It is also observed that, at least for the specific model structures considered in this study, R factor of 5.0 can be used in the seismic design of staggered wall structures with proposed retrofit schemes, while R factor of 3.0 may be reasonable for standard staggered wall structures.