• Title/Summary/Keyword: weak gravitational lensing

Search Result 10, Processing Time 0.026 seconds

WEAK GRAVITATIONAL LENSING ANALYSIS OF A SAMPLE OF 50 MASSIVE GALAXY CLUSTERS

  • PHRIKSEE, A.;COVONE, G.;KOMONJINDA, S.;SERENO, M.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.393-395
    • /
    • 2015
  • Weak gravitational lensing is an efficient technique for detecting galaxy clusters and probing their mass distribution. We present a weak gravitational lensing analysis of a large sample of galaxy clusters. We have built a nearly complete sample of 50 optically rich clusters, located in the redshift range 0.1 < z < 0.6 and observed in the Canada France Hawaii Telescope Legacy Survey (CFHT-LS). We used weak gravitational lensing to measure, for each galaxy cluster, the density radial profile, the total mass and the mass-to-light ratio (by comparing with the total luminosity of the member galaxies). This project is a preliminary step towards the next analysis of the weak lensing galaxy clusters in the surveys KiDS and VOICE, which are currently collecting data with the VLT Survey Telescope, in Chile.

Testing Gravitational Weak-lensing Maps with Galaxy Redshift Surveys

  • Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2014
  • A gravitational weak-lensing map provides a weighted "picture" of the projected surface mass density and is to be an important tool for identifying "mass-selected" clusters of galaxies. However, weak-lensing maps have a limitation due to the projection of large-sclae structure along the line-of-sight. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam. Our study will provide an important opportunity to examine the efficiency and completeness of a weak-lensing selection, and further to improve the method of cluster identification in future weak-lensing surveys.

  • PDF

WEAK GRAVITATIONAL LENSING BY STOCHASTIC GRAVITATIONAL WAVE BACKGROUND (확률적 중력파동 배경에 의한 약한 중력렌즈)

  • Song, Doo-Jong
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.103-111
    • /
    • 2007
  • On the formulation frameworks of linearly perturbed spacetime and weak gravitational lensing(WGL) we studied the statistical properties of a bundle of light rays propagating through stochastic gravitational wave background(SGWB). For this we considered the SGWB as tensor perturbations of linearly perturbed Friedmann spacetime. Using the solution of null geodesic deviation equation(NGDE) we related the convergence, shear and rotation deformation spectra of WGL with the strain spectra of SGWB. Adopting the astrophysical and cosmological SGWB strain spectra which were already known we investigated the approximated spectral forms of convergence, shear and rotation of WGL.

General Relativity and Light Bending/Gravitational Lensing (일반상대성이론과 빛의 꺾임/중력렌즈)

  • Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.57.4-57.4
    • /
    • 2015
  • Light bending by gravity was the key prediction of general relativity. Solar eclipse expedition of 1919 provided the observational support for the theory of general relativity. Diverse gravitational lensing, i.e., light bending, phenomena have been speculated and predicted by general relativity and ultimately discovered many years later. Gravitationally lensed quasars, luminous arcs, weak lensing, and microlensing have provided invaluable information about the distribution of matter, especially of dark matter, and the cosmology. Gravitational lensing is one of the most spectacular manifestation of general relativity and will remain as an extremely useful astrophysical tools in the future.

  • PDF

Testing Gravitational Weak-lensing Maps with Galaxy Redshift Surveys: preliminary results

  • Ko, Jongwan;Utsumi, Yousuke;Hwang, Ho Seong;Dell'Antonio, Ian P.;Geller, Margaret J.;Yang, Soung-Chul;Kyeong, Jaemann
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2014
  • To measure the mass distribution of galaxy systems weak-lensing analysis has been widely used because it directly measures the total mass of a system regardless of its baryon content and dynamical state. However, the weak-lensing only provides a map of projected surface mass density. On the other hand, galaxy redshift surveys provide a map of the three-dimensional galaxy distribution. It thus can resolve the structures along the line of sight projected in the weak-lensing map. Therefore, the comparison of structures identified in the weak-lensing maps and in the redshift surveys is an important test of the issues limiting applications of weak-lensing to the identification of galaxy clusters. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam.

  • PDF

Weak Lensing Analysis of the Two High-z Massive Clusters, SPT-CL J0205-5829 and MOO1014+0038, with HST Observations

  • Kim, Seojin F.;Jee, Myungkook J.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.41.3-42
    • /
    • 2017
  • The mass function of massive high-z clusters is extremely sensitive to the cosmological parameters. However, it is challenging to estimate their accurate masses. The "See Change" HST programme offers a rare opportunity to measure them using weak gravitational lensing. In this talk, we study SPT-CL J0205-5829 (z=1.322) and MOO1014+0038 (z=1.24) discovered in the SPT-SZ survey and MaDCoW Survey, respectively. We perform weak lensing analysis with the Advanced Camera for Surveys (ACS) and Wide Field Camera 3 (WFC3) images by carefully taking into account the instrumental effect. We successfully detect weak lensing signals which produce cluster masses consistent with those from non-lensing methods based on hydrostatic equilibrium.

  • PDF

Estimating dark matter mass for the most massive high-z galaxy cluster, SPT-CL J2106-5844 using weak-lensing analysis with HST observations

  • Kim, Jinhyub;Jee, Myungkook James;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.67.2-67.2
    • /
    • 2016
  • SPT-CL J2106-5844 is known to be one of the most massive galaxy clusters ($M_{200}{\sim}1.27{\times}10^{15}M_{sun}$) ever found at z > 1. Given its redshift (z ~ 1.132), the mass of this cluster estimated by Sunyaev-Zel'dovich effect and X-ray observation is too large compared with the current ${\Lambda}CDM$ cosmology prediction. Mass estimation from these methods can be biased because they require assumptions on hydrostatic equilibrium, which are not guaranteed to hold at such high redshift (about 40% of the current age of the Universe). Thus, we need to verify the mass of this interesting cluster using gravitational lensing, which does not require such assumptions. In this work, we present our preliminary result of dark matter mass and its spatial mass distribution of SPT-CL J2106-5844 using weak-lensing analysis based on HST optical/NIR deep imaging data. We compare mass estimates from different sources and discuss cosmological implications.

  • PDF

THE MASS PROFILE OF ABELL 1689 FROM A LENSING ANALYSIS OF DEEP WIDE FIELD SUBARU IMAGES

  • UMETSU KEIICHI;BROADHURST TOM;TAKADA MASAHIRO;KONG Xu
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.191-195
    • /
    • 2005
  • We used Subaru observations of A1689 (z = 0.183) to derive an accurate, model-independent mass profile for the entire cluster, r$\le$2Mpc/h, by combining magnification bias and distortion measurements. The projected mass profile steepens quickly with increasing radius, falling away to zero at r${\~}$1.0Mpc/h, well short of the anticipated virial radius. Our profile accurately matches onto the inner profile, r $\le$200kpc/ h, derived from deep HST / ACS images. The combined ACS and Subaru information is well fitted by an NFW profile with virial mass, $(1.93 \pm 0.20) {\times}10^{15} M_{\bigodot}$, and surprisingly high concentration, $C_{vir} = 13.7^{+1.4}_{-1.1}$, significantly larger than theoretically expected ($C_{vir} {\le}4$), corresponding to a relatively steep overall profile. These results are based on a reliable sample of background galaxies selected to be redder than the cluster E/SO sequence. By including the faint blue galaxy population a much smaller distortion signal is found, demonstrating that blue cluster members significantly dilute the true signal for r $\le$ 400kpc/ h. This contamination is likely to affect most weak lensing results to date.

VOIDS LENSING OF THE CMB AT HIGH RESOLUTION

  • SANGKA, ANUT;SAWANGWIT, UTANE;SANGUANSAK, NUANWAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.397-399
    • /
    • 2015
  • Recently, cosmic voids have been recognized as a powerful cosmological probe. A number of studies have focused on the effects of the gravitational lensing by voids on the temperature (and in some cases polarization) anisotropy of the Cosmic Microwave Background (CMB) background at relatively large to medium scales, l ~ 1000. Many of these studies attempt to explain the unusually large cold spot in CMB temperature maps and dynamical evidence of dark energy via detections of late-time integrated Sachs Wolfe (ISW) effect. Here, the effects of lensing by voids on the CMB temperature anisotropy at small scales, up to l = 3000, will be investigated. This work is carried out in the light of the benefits of adding large catalogues of cosmic voids, to be identified by future large galaxy surveys such as EUCLID and LSST, to the analysis of CMB data such as those from Planck mission. Our numerical simulation utilizes two methods, namely, the small-de ectionangle approximation and full ray-tracing analysis. Using the fitted void density profiles and radius (RV ) distribution available in the literature from N-body simulations, we simulated the secondary temperature anisotropy (lensing) of CMB photons induced by voids along a line of sight from redshift 0 to 2. Each line of sight contains approximately 1000 voids of effective radius $RV_{,eff}=35h^{-1}Mpc$ with randomly distributed radial and projected positions. Both methods are used to generate temperature maps. The two methods will be compared for their accuracy and effciency in the implementation of theoretical modeling.

When galaxies align: intrinsic alignments of the progenitors of elliptical galaxies in the Horizon-AGN simulation

  • James Bate;Nora Elisa Chisari;Sandrine Codis;Garreth Martin;Yohan Dubois;Julien Devriendt;Christophe Pichon;Adrianne Slyz
    • Monthly Notices of the Royal Astronomical Society
    • /
    • v.491 no.3
    • /
    • pp.4057-4068
    • /
    • 2020
  • Elliptical galaxies today appear aligned with the large-scale structure of the Universe, but it is still an open question when they acquire this alignment. Observational data are currently insufficient to provide constraints on the time evolution of intrinsic alignments, and hence existing models range from assuming that galaxies gain some primordial alignment at formation, to suggesting that they react instantaneously to tidal interactions with the large-scale structure. Using the cosmological hydrodynamical simulation Horizon-AGN, we measure the relative alignments between the major axes of galaxies and eigenvectors of the tidal field as a function of redshift. We focus on constraining the time evolution of the alignment of the main progenitors of massive z = 0 elliptical galaxies, the main weak-lensing contaminant at low redshift. We show that this population, which at z = 0 has a stellar mass above 1010.4 M, transitions from having no alignment with the tidal field at z = 3, to a significant alignment by z = 1. From z = 0.5, they preserve their alignment at an approximately constant level until z = 0. We find a mass dependence of the alignment signal of elliptical progenitors, whereby ellipticals that are less massive today (1010.4 < M/M < 1010.7) do not become aligned till later redshifts (z < 2), compared to more massive counterparts. We also present an extended study of progenitor alignments in the parameter space of stellar mass and galaxy dynamics, the impact of shape definition, and tidal field smoothing.