• 제목/요약/키워드: weak anti-localization (WAL)

검색결과 1건 처리시간 0.017초

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.