• Title/Summary/Keyword: wavy surface

Search Result 86, Processing Time 0.029 seconds

Characterization of Thin Film Materials by Nanoindentation and Scanning Probe Microscopy (나노인덴테이션과 주사탐침현미경을 이용한 박막 재료의 특성평가)

  • Kim, Bong-seob;Yun, Jon-do;Kim, Jong-kuk
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.606-612
    • /
    • 2003
  • Surface and mechanical properties of thin films with submicron thickness was characterized by nanoindentation with Berkovich and Vickers tips, and scanning probe microscopy. Nanoindention was made in a depth range of 15 to 200 nm from the surface by applying tiny force in a range from 150 to $9,000 \mu$N. Stiffness, contact area, hardness, and elastic modulus were determined from the force-displacement curve obtained. Reliability was first tested by using fused quartz, a standard sample. Elastic modulus and hardness values of fused quartz measured were the same as those reported in the literature within two percent of error. Mechanical properties of ITO thin film were characterized in a depth range of 15∼200nm. As indentation depth increased, elastic modulus and hardness decreased by substrate effect. Ion beam deposited DLC thin films were indented in a depth range of 40∼50 nm. The results showed that the DLC thin film using benzene and bias voltage 0∼-50 V has elastic modulus and hardness value of 132 and 18 GPa respectively. Pure DLC thin films showed roughnesses lower than 0.25 nm, but silicon-added DLC thin films showed much higher roughness values, and the wavy surface morphology.

Effect of surface quality on hydrogen/helium irradiation behavior in tungsten

  • Chen, Hongyu;Xu, Qiu;Wang, Jiahuan;Li, Peng;Yuan, Julong;Lyu, Binghai;Wang, Jinhu;Tokunaga, Kazutoshi;Yao, Gang;Luo, Laima;Wu, Yucheng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.1947-1953
    • /
    • 2022
  • As the plasma facing material in the nuclear fusion reactor, tungsten has to bear the irradiation impact of high energy particles. The surface quality of tungsten may affect its irradiation resistance, and even affect the service life of fusion reactor. In this paper, tungsten samples with different surface quality were polished by mechanical processing, subsequently conducted by D2+ implantation and thermal desorption. D2+ implantation was performed at room temperature (RT) with the irradiation dose of 1 × 1021 D2+/m2 by 5 keV D2+ ions, and thermal desorption spectroscopy measurements were done from RT to 900 K. In addition, He irradiation was also performed by 50 eV He+ ions energy with the fluxes of 5.5 × 1021 m-2s-1 and 1.5 × 1022 m-2s-1, respectively. Results reveal that the hydrogen/helium irradiation behavior are both related to surface quality. Samples with high surface quality has superior D2+ retention behavior with less D2 retained after implantation. However, such samples are more likely to generate fuzzes on the surface after helium irradiation. Different morphologies (smooth, wavy, pyramids) after helium irradiation also demonstrates that the surface morphology is related to tungsten crystallographic orientation.

Fretting Oamage Evaluation of Zircaloy-Inconel Contact (지르칼로이-인코넬 접촉에서의 프레팅 손상 평가)

  • 김태형;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.263-268
    • /
    • 2000
  • The fretting damage of the contact between Zircaloy-4 and Inconel 600 have Investigated. A fretting wear tester was designed to be suitable for this fretting test. In this study, the number of cycles, slip amplitude and normal load were selected as main factors of fretting wear. As the result of this research the wear volume increased with the increase of loads, slip amplitudes and the number of cycles and was more affected by slip amplitudes rather than by load. According to SEM, stick, partial slip, gross slip were observed on the surface of both specimens and wavy worn surfaces as the typical fretting damage were also Investigated due to accumulation of plastic flow.

  • PDF

Active Controls of Flow Over a Sphere for Drag Reduction (능동제어를 이용한 구의 저항 감소)

  • Jeon, Seung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.199-202
    • /
    • 2006
  • The objective of this study is to propose methods of controlling the wake behind a sphere for drag reduction using the suboptimal control theory and surrogate management framework, respectively. The Reynolds numbers considered is 300 at which the base flow is unsteady planar symmetric. Given the cost function defined as the square of the difference between the target pressure (potential-flow pressure) and real flow pressure on the sphere surface, the suboptimal control makes the flow steady axisymmetric and produces drag reduction. Based on the actuation profile from the suboptimal control, the optimal wavy actuation profile is obtained using the surrogate management framework and produces drag reduction.

  • PDF

A Numerical Analysis for the Washboarding Phenomenon on the Top Surface of Fine Powders Using the Discrete Element Method (분말에서 발생하는 Washboarding 현상에 대한 이산요소법을 이용한 수치해석적 연구)

  • Lee, Seoungjun;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.4
    • /
    • pp.93-98
    • /
    • 2020
  • Washboarding is a phenomenon in which a wavy shape occurs periodically and naturally on an unpaved road made of soil or gravel. This phenomenon causes high-frequency vibration of the traffic traveling on the road because of the height difference of the wave pattern, which may lead to vehicle failure. Consequently, associated research is needed concerning vehicle safety. Therefore, in this study, a numerical simulation was conducted using the discrete element method, which is often used for powder simulation. In contrast to previous studies, the results of this study demonstrate that washboarding can occur even in an environment of 1.5 m/s or less. However, the amount of washboarding is minimal. The study revealed that washboarding develops over time, such that sufficient development time is required before measurements are taken.

Modeling Cutter Swept Angle at Cornering Cut

  • Chan, K.W.;Choy, H.S.
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.1-12
    • /
    • 2003
  • When milling concave corners, cutter load increases momentarily and fluctuates severely due to concentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavy machined surface and cutter breakage. An important factor for studying cutter load in 2.5D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In this different corner shapes. In our work, we express RDC mathematically in terms of the instantaneous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for modeling CSA is explained. Finally, examples are shown to demonstrate that the proposed CSA modeling method can give an accurate prediction of cutter load pattern at cornering cut.

Visualization of Flow and Wetting Transition in PDMS Superhydrophobic Microchannel (PDMS 기반 초소수성 마이크로 채널내의 유동 및 표면 젖음 전이 가시화에 관한 연구)

  • Kim, Ji-Hoon;Hong, Jong-In;Byun, Do-Young;Ko, Han-Seo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.671-674
    • /
    • 2008
  • We investigate the slippage effect in a micro-channel depending on the surface characteristics; hydrophilic, hydrophobic, and super-hydrophobic wettabilities. The micro-scale grooves are fabricated on the vertical wall to make the super-hydrophobic surfaces, which enable us visualize the flow fields near walls and directly measure the slip length. Velocity profiles are measured using micro-particle image velocimetry (Micro-PIV) and compared those in the hydrophilic glass, hydrophobic PDMS, and super-hydrophobic PDMS micro-channels. To directly measure the velocity in the super-hydrophobic micro-channel, the transverse groove structures are fabricated on the vertical wall in the micro-channel. The velocity profile near the wall shows larger slip length and, if the groove structure is high and wide, the liquid meniscus forms curves into the valley so that the wavy flow is created after the grooves.

  • PDF

The Effect of Structure on the Fatigue of Low Carbon Steel (조직변화(組織變化)가 피로현상(疲勞現象)에 미치는 영향(影響))

  • C.S.,Kang;C.M.,Suh
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.33-42
    • /
    • 1972
  • This paper was studied on the behavior, crack formation and propagation of slip bands on low carbon steel which was heat-treated in three conditions in order to change metallic structure. The specimens were tested by rotating bending fatigue testing machine and also observed the variations of grains by microscope. From the test results it was clear that fatigue endurance limit and life of low carbon steel were more increased in contrast with the case that the grain size of specimen was more decreased. Slip bands developed at oil-quenched specimen and furnace-cooled specimen. Formed cracks in the first one or two grains below the surface were approximately "planar" type, there after they followed "wavy" type. It was also found that cracks at 30% higher stress than fatigue limit were usually developed inter-granular, and cracks at 12% higher stress than fatigue limit were propagated meandering path, partly trans- and partly inter-grandular.

  • PDF

A Study on the Thickness Characteristics of the Liquid Sheet Formed by an Impinging Jet Onto a Wall (벽 충돌 제트로 생성되는 액막의 두께 분포 특성 연구)

  • J. S. Lee;T. Y. Lee;J. M. Jo;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2023
  • In this study, the thickness of the liquid sheet formed by a low speed impinging jet onto a wall was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The measurement results were compared with the theoretical predictions for two impinging jets. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions showed some differences from the measurement results.

A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities (충돌벽 노즐의 저속 제트에 의한 액막 특성 연구)

  • H. U. Park;J. D. Kim;G. E. Song;B. S. Kang
    • Journal of ILASS-Korea
    • /
    • v.29 no.2
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.