• 제목/요약/키워드: wavelet.

검색결과 3,585건 처리시간 0.031초

A Study on Development of App-Based Electric Fire Prediction System (앱기반 전기화재 예측시스템 개발에 관한 연구)

  • Choi, Young-Kwan;Kim, Eung-Kwon
    • Journal of Internet Computing and Services
    • /
    • 제14권4호
    • /
    • pp.85-90
    • /
    • 2013
  • Currently, the electric fire prediction system uses PIC(Peripheral Interface Controller) for controller microprocessor. PIC has a slower computing speed than DSP does, so its real-time computing ability is inadequate. So with the basic characteristics waveform during arc generation as the standard reference, the comparison to this reference is used to predict and alarm electric fire from arc. While such alarm can be detected and taken care of from a remote central server, that prediction error rate is high and remote control in mobile environment is not available. In this article, the arc detection of time domain and frequency domain and wavelet-based adaptation algorithm executing the adaptation algorithm in conversion domain were applied to develop an electric fire prediction system loaded with new real-time arc detection algorithm using DSP. Also, remote control was made available through iPhone environment-based app development which enabled remote monitoring for arc's electric signal and power quality, and its utility was verified.

Signal Analysis for Detecting Abnormal Breathing (비정상 호흡 감지를 위한 신호 분석)

  • Kim, Hyeonjin;Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • 제29권4호
    • /
    • pp.249-254
    • /
    • 2020
  • It is difficult to control children who exhibit negative behavior in dental clinics. Various methods are used for preventing pediatric dental patients from being afraid and for eliminating the factors that cause psychological anxiety. However, when it is difficult to apply this routine behavioral control technique, sedation therapy is used to provide quality treatment. When the sleep anesthesia treatment is performed at the dentist's clinic, it is challenging to identify emergencies using the current breath detection method. When a dentist treats a patient that is under the influence of an anesthetic, the patient is unconscious and cannot immediately respond, even if the airway is blocked, which can cause unstable breathing or even death in severe cases. During emergencies, respiratory instability is not easily detected with first aid using conventional methods owing to time lag or noise from medical devices. Therefore, abnormal breathing needs to be evaluated in real-time using an intuitive method. In this paper, we propose a method for identifying abnormal breathing in real-time using an intuitive method. Respiration signals were measured using a 3M Littman electronic stethoscope when the patient's posture was supine. The characteristics of the signals were analyzed by applying the signal processing theory to distinguish abnormal breathing from normal breathing. By applying a short-time Fourier transform to the respiratory signals, the frequency range for each patient was found to be different, and the frequency of abnormal breathing was distributed across a broader range than that of normal breathing. From the wavelet transform, time-frequency information could be identified simultaneously, and the change in the amplitude with the time could also be determined. When the difference between the amplitude of normal breathing and abnormal breathing in the time domain was very large, abnormal breathing could be identified.

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Improvement of Steganalysis Using Multiplication Noise Addition (곱셉 잡음 첨가를 이용한 스테그분석의 성능 개선)

  • Park, Tae-Hee;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제49권4호
    • /
    • pp.23-30
    • /
    • 2012
  • This paper proposes an improved steganalysis method to detect the existence of secret message. Firstly, we magnify the small stego noise by multiplying the speckle noise to a given image and then we estimate the denoised image by using the soft thresholding method. Because the noises are not perfectly eliminated, some noises exist in the estimated cover image. If the given image is the cover image, then the remained noise will be very small, but if it is the stego image, the remained noise will be relatively large. The parent-child relationship in the wavelet domain will be slighty broken in the stego image. From this characteristic, we extract the joint statistical moments from the difference image between the given image and the denoised image. Additionally, four statistical moments are extracted from the denoised image for the proposed steganalysis method. All extracted features are used as the input of MLP(multilayer perceptron) classifier. Experimental results show that the proposed scheme outperforms previous methods in terms of detection rates and accuracy.

Bayesian Texture Segmentation Using Multi-layer Perceptron and Markov Random Field Model (다층 퍼셉트론과 마코프 랜덤 필드 모델을 이용한 베이지안 결 분할)

  • Kim, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • 제44권1호
    • /
    • pp.40-48
    • /
    • 2007
  • This paper presents a novel texture segmentation method using multilayer perceptron (MLP) networks and Markov random fields in multiscale Bayesian framework. Multiscale wavelet coefficients are used as input for the neural networks. The output of the neural network is modeled as a posterior probability. Texture classification at each scale is performed by the posterior probabilities from MLP networks and MAP (maximum a posterior) classification. Then, in order to obtain the more improved segmentation result at the finest scale, our proposed method fuses the multiscale MAP classifications sequentially from coarse to fine scales. This process is done by computing the MAP classification given the classification at one scale and a priori knowledge regarding contextual information which is extracted from the adjacent coarser scale classification. In this fusion process, the MRF (Markov random field) prior distribution and Gibbs sampler are used, where the MRF model serves as the smoothness constraint and the Gibbs sampler acts as the MAP classifier. The proposed segmentation method shows better performance than texture segmentation using the HMT (Hidden Markov trees) model and HMTseg.

Emotion Recognition Using Color and Pattern in Textile Images (컬러와 패턴을 이용한 텍스타일 영상에서의 감정인식 시스템)

  • Shin, Yun-Hee;Kim, Young-Rae;Kim, Eun-Yi
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • 제45권6호
    • /
    • pp.154-161
    • /
    • 2008
  • In this paper, a novel method is proposed using color and pattern information for recognizing some emotions included in a fertile. Here we use 10 Kobayashi emotion to represent emotions. - { romantic, clear, natural, casual, elegant chic, dynamic, classic, dandy, modem } The proposed system is composed of feature extraction and classification. To transform the subjective emotions as physical visual features, we extract representative colors and Patterns from textile. Here, the representative color prototypes are extracted by color quantization method, and patterns exacted by wavelet transform followed by statistical analysis. These exacted features are given as input to the neural network (NN)-based classifiers, which decides whether or not a textile had the corresponding emotion. When assessing the effectiveness of the proposed system with 389 textiles collected from various application domains such as interior, fashion, and artificial ones. The results showed that the proposed method has the precision of 100% and the recall of 99%, thereby it can be used in various textile industries.

Determination of the Coefficient of Variation of Shear Wave Velocity in Rock Filled Zone of CFRD (Concrete Faced Rock Filled Dam) for Reliability Based Analysis (신뢰성 기반 해석을 위한 국내 CFRD 사력존 재료의 전단파 속도 변동계수 결정)

  • Park, Hyung-Choon;Lim, Heui-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • 제33권4호
    • /
    • pp.17-24
    • /
    • 2017
  • Shear wave velocity (or shear modulus) of rock filled zone of CFRD is very important factor in the evaluation of performance of CFRD under the load such as earthquake. A shear wave velocity profile can be determined by surface wave method but this profile has been uncertainty caused by spatial variation of material property in rock filled zone. This uncertainty in shear wave velocity profile could be evaluated by the reliability based analysis which uses a coefficient of variation of material property to consider uncertainty caused by spatial variation of material property. In this paper, the possible 600 shear wave velocity profiles in rock filled zone of CFRD were generated using the method based on harmonic wavelet transform and 8 shear wave velocity profiles by HWAW method in the field, and the coefficients of variation of shear wave velocity with depth were evaluated for the rock filled zone of CFRD in Korea.

Electrical Arc Detection using Convolutional Neural Network (합성곱 신경망을 이용한 전기 아크 신호 검출)

  • Lee, Sangik;Kang, Seokwoo;Kim, Taewon;Kim, Manbae
    • Journal of Broadcast Engineering
    • /
    • 제25권4호
    • /
    • pp.569-575
    • /
    • 2020
  • The serial arc is one of factors causing electrical fires. Over past decades, various researches have been carried out to detect arc occurrences. Even though frequency analysis, wavelet, and statistical features have been used, additional steps such as transformation and feature extraction are required. On the contrary, deep learning models directly use the raw data without any feature extraction processes. Therefore, the usage of time-domain data is preferred, but the performance is not satisfactory. To solve this problem, subsequent 1-D signals are transformed into 2-D data that can feed into a convolutional neural network (CNN). Experiments validated that CNN model outperforms deep neural network (DNN) by the classification accuracy of 8.6%. In addition, data augmentation is utilized, resulting in the accuracy improvement by 14%.

Fully Automatic Facial Recognition Algorithm By Using Gabor Feature Based Face Graph (가버 피쳐기반 얼굴 그래프를 이용한 완전 자동 안면 인식 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • 제11권2호
    • /
    • pp.31-39
    • /
    • 2011
  • The facial recognition algorithms using Gabor wavelet based face graph produce very good performance while they have some weakness such as a large amount of computation and an irregular result depend on initial location. We proposed a fully automatic facial recognition algorithm using a Gabor feature based geometric deformable face graph matching. The initial location and size of a face graph can be selected using Adaboost detection results for speed-up. To find the best face graph with the face model graph by updating the size and location of the graph, the geometric transformable parameters are defined. The best parameters for an optimal face graph are derived using an optimization technique. The simulation results show that the proposed algorithm can produce very good performance with recognition rate 96.7% and recognition speed 0.26 sec for FERET database.

Quantization Noise Reduction in MPEG Postprocessing System Using the Variable Filter Adaptive to Edge Signal (에지 신호에 적응적인 가변 필터를 이용한 MPEG 후처리 시스템에서의 양자화 잡음 제거)

  • Lee Suk-Hwan;Huh So-Jung;Lee Eung-Joo;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • 제9권3호
    • /
    • pp.296-306
    • /
    • 2006
  • We proposed the algorithm for the quantization noise reduction based on variable filter adaptive to edge signal in MPEG postprocessing system. In our algorithm, edge map and local modulus maxima in the decoded images are obtained by using 2D Mallat wavelet tilter. And then, blocking artifacts in inter-block are reduced by Gaussian LPF that is variable to filtering region according to edge map. Ringing artifacts in intra-block are reduced by 2D SAF according to local modulus maxima. Experimental results show that the proposed algorithm was superior to the conventional algorithms as regards PSNR, which was improved by 0.04-0.20 dB, and the subjective image quality.

  • PDF