• Title/Summary/Keyword: wavelet-based decomposition

Search Result 166, Processing Time 0.022 seconds

A Study on the Multiresolutional Coding Based on Spline Wavelet Transform (스플라인 웨이브렛 변환을 이용한 영상의 다해상도 부호화에 관한 연구)

  • 김인겸;정준용;유충일;이광기;박규태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2313-2327
    • /
    • 1994
  • As the communication environment evolves, there is an increasing need for multiresolution image coding. To meet this need, the entrophy constratined vector quantizer(ECVQ) for coding of image pyramids by spline wavelet transform is introduced in this paper. This paper proposes a new scheme for image compression taking into account psychovisual feature both in the space and frequency domains : this proposed method involves two steps. First we use spline wavelet transform in order to obtain a set of biorthogonal subclasses of images ; the original image is decomposed at different scale using a pyramidal algorithm architecture. The decomposition is along the vertical and horizontal directions and maintains constant the number of pixels required the image. Second, according to Shannon's rate distortion theory, the wavelet coefficients are vectored quantized using a multi-resolution ECVQ(entropy-constrained vector quantizer) codebook. The simulation results showed that the proposed method could achieve higher quality LENA image improved by about 2.0 dB than that of the ECVQ using other wavelet at 0.5 bpp and, by about 0.5 dB at 1.0 bpp, and reduce the block effect and the edge degradation.

  • PDF

Modeling and Forecasting Saudi Stock Market Volatility Using Wavelet Methods

  • ALSHAMMARI, Tariq S.;ISMAIL, Mohd T.;AL-WADI, Sadam;SALEH, Mohammad H.;JABER, Jamil J.
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.83-93
    • /
    • 2020
  • This empirical research aims to modeling and improving the forecasting accuracy of the volatility pattern by employing the Saudi Arabia stock market (Tadawul)by studying daily closed price index data from October 2011 to December 2019 with a number of observations being 2048. In order to achieve significant results, this study employs many mathematical functions which are non-linear spectral model Maximum overlapping Discrete Wavelet Transform (MODWT) based on the best localized function (Bl14), autoregressive integrated moving average (ARIMA) model and generalized autoregressive conditional heteroskedasticity (GARCH) models. Therefore, the major findings of this study show that all the previous events during the mentioned period of time will be explained and a new forecasting model will be suggested by combining the best MODWT function (Bl14 function) and the fitted GARCH model. Therefore, the results show that the ability of MODWT in decomposition the stock market data, highlighting the significant events which have the most highly volatile data and improving the forecasting accuracy will be showed based on some mathematical criteria such as Mean Absolute Percentage Error (MAPE), Mean Absolute Scaled Error (MASE), Root Means Squared Error (RMSE), Akaike information criterion. These results will be implemented using MATLAB software and R- software.

Optimum design of steel frame structures considering construction cost and seismic damage

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.1-26
    • /
    • 2015
  • Minimizing construction cost and reducing seismic damage are two conflicting objectives in the design of any new structure. In the present work, we try to develop a framework in order to solve the optimum performance-based design problem considering the construction cost and the seismic damage of steel moment-frame structures. The Park-Ang damage index is selected as the seismic damage measure because it is one of the most realistic measures of structural damage. The non-dominated sorting genetic algorithm (NSGA-II) is employed as the optimization algorithm to search the Pareto optimal solutions. To improve the time efficiency of the proposed framework, three simplifying strategies are adopted: first, simplified nonlinear modeling investigating minimum level of structural modeling sophistication; second, fitness approximation decreasing the number of fitness function evaluations; third, wavelet decomposition of earthquake record decreasing the number of acceleration points involved in time-history loading. The constraints of the optimization problem are considered in accordance with Federal Emergency Management Agency's (FEMA) recommended seismic design specifications. The results from numerical application of the proposed framework demonstrate the efficiency of the framework in solving the present multi-objective optimization problem.

A Color Image Coding by Estimating Spectral Correlation Based on Wavelet Transform (웨이블렛 변환 기반 스펙트럴 상관성 추정에 의한 칼라 영상 부호화)

  • Kwak, No-Yoon;Jeong, Dae-Gwon;Hwang, Byong-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.1
    • /
    • pp.49-58
    • /
    • 2000
  • This paper presents a new color Image coding method which estimates color component Images from luminance image using spectral correlation m wavelet transformed domain More specifically, the wavelet transform is performed to the luminance image(Y), and then, for an efficient quad-tree division to encompass the varying block size, a cost function IS defined using high frequency coefficients generated by wavelet decomposition Next, a scale factor and an offset factor for each the block to minimize the estimation error between luminance image(Y) and R, B Images, are iteratively calculated With respect to the varying block size With associated cost function.

  • PDF

The Improved BAMS Filter for Image Denoising (영상 잡음제거를 위한 개선된 BAMS 필터)

  • Woo, Chang-Yong;Park, Nam-Chun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.4
    • /
    • pp.270-277
    • /
    • 2010
  • The BAMS filter is a kind of wavelet shrinkage filter based on the Bayes estimators with no simulation, therefore it can be used for a real time filter. The denoising efficiency of BAMS filter is seriously affected by the estimated noise variance in each wavelet band. To remove noise in signals in existing BAMS filter, the noise variance is estimated by using the quartile of the finest level of details in the wavelet decomposition, and with this variance, the noise of the level is removed. In this paper, to remove the image noise includingodified quartile of the level of detail is proposed. And by these techniques, the image noises of mid and high frequency bands are removed, and the results showed that the increased PSNR of ab the midband noise, the noise variance estimation method using the monotonic transform and the mout 2[dB] and the effectiveness in denosing of low noise deviation images.

Fast Hybrid Transform: DCT-II/DFT/HWT

  • Xu, Dan-Ping;Shin, Dae-Chol;Duan, Wei;Lee, Moon-Ho
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.782-792
    • /
    • 2011
  • In this paper, we address a new fast DCT-II/DFT/HWT hybrid transform architecture for digital video and fusion mobile handsets based on Jacket-like sparse matrix decomposition. This fast hybrid architecture is consist of source coding standard as MPEG-4, JPEG 2000 and digital filtering discrete Fourier transform, and has two operations: one is block-wise inverse Jacket matrix (BIJM) for DCT-II, and the other is element-wise inverse Jacket matrix (EIJM) for DFT/HWT. They have similar recursive computational fashion, which mean all of them can be decomposed to Kronecker products of an identity Hadamard matrix and a successively lower order sparse matrix. Based on this trait, we can develop a single chip of fast hybrid algorithm architecture for intelligent mobile handsets.

An invisible watermarking scheme using the SVD (특이치 분해를 이용한 비가시적 워터마크 기법)

  • 유주연;유지상;김동욱;김대경
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11C
    • /
    • pp.1118-1122
    • /
    • 2003
  • In this paper, we propose a new invisible digital watermarking scheme based on wavelet transform using singular value decomposition. Embedding process is started by decomposing the lowest frequency band image with 3${\times}$3 block among which we define the watermark block chosen by a key set; entropy and condition number of the block. A watermark is embedded in the singular values of each watermark blocks. This provides a robust watermarking in lowest possible time-frequency domain. To detect the watermark, we are locally modeling an attack as 3${\times}$3 matrices on the watermark blocks. Combining with the SVD and the attack matrices, we estimate watermark set corresponding to the watermark blocks. In each watermark block, we determine an optimal watermark which is justified by the T-testing. A numerical experiment shows that the proposed watermarking scheme efficiently detects the watermarks from several JPEG attacks.

A Study for the Analysis of EEG Signals Evoked by Auditory Stimulus using Wavelet Transformations (Wavelet변환을 이용한 청각자극에 의해 유발되는 뇌파의 분석에 관한 연구)

  • Kim, J.H.;Yoo, I.H.;Shin, J.W.;Im, J.J.;Whang, M.C.;Kim, C.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.233-236
    • /
    • 1996
  • We are exposed to the various external stimuli input from the environment, which cause emotional changes based on the characteristics of the stimuli. Unfortunately, there are no quantitative results on relationship between human sensibility and the characteristics of physiological signals. The objective of this study was to quantify EEG signals evoked by auditory stimulation based on the assumption that the analysis of the variability on the characteristics of the EEG waveform may provide the significant information regarding changes in psychological states of the subject. The experiment was devised with seven experimental conditions, which are control and six different types of auditory stimulation. Twenty subjects were used to obtain EEGs while introducing auditory stimulation. Wavelet transformation was employed to analyze the EEG signals. The results showed that the reconstructed signals at the decomposition level revealed the different energy value on the EEG signals. Also, general patterns of EEG signals in rest state compare with negative and positive stimulus were found. This study could be extended to estabilish an algorithm which distinguishes psychophysiological states of the subjects exposed to the auditory stimulation.

  • PDF

Anti-Spoofing Method for Iris Recognition by Combining the Optical and Textural Features of Human Eye

  • Lee, Eui Chul;Son, Sung Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2424-2441
    • /
    • 2012
  • In this paper, we propose a fake iris detection method that combines the optical and textural features of the human eye. To extract the optical features, we used dual Purkinje images that were generated on the anterior cornea and the posterior lens surfaces based on an analytic model of the human eye's optical structure. To extract the textural features, we measured the amount of change in a given iris pattern (based on wavelet decomposition) with regard to the direction of illumination. This method performs the following two procedures over previous researches. First, in order to obtain the optical and textural features simultaneously, we used five illuminators. Second, in order to improve fake iris detection performance, we used a SVM (Support Vector Machine) to combine the optical and textural features. Through combining the features, problems of single feature based previous works could be solved. Experimental results showed that the EER (Equal Error Rate) was 0.133%.

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF