• 제목/요약/키워드: wavelet method

검색결과 1,755건 처리시간 0.033초

Landscape pattern analysis from IKONOS image data by wavelet and semivariogram method

  • Danfeng, Sun;Hong, Li
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1209-1211
    • /
    • 2003
  • The wavelet and semivariogram analysis method are used to identify the city landscape and farmland landscape pattern on the 1m resolution IKONOS images. The results prove that wavelet method is a potential way for landscape pattern analysis. Compared to semivariogram analysis, Wavelet analysis can not only detect the overall spatial pattern, but also find multi-scale and direction structures. In this experiment, the wavelet analysis results indicate: (1) the city landscape image is mainly composed of three level structures whose spatial pattern characters appear at 2m, 16m, 128m and 256m accordingly; (2) the farmland landscape is mainly two scale spatial patterns appearing at the 2m, 128m and 256m. IKONOS Remote sensing, with the high spatial and spectral information, is a powerful tool that can use in many ecological systems research and sustainable management.

  • PDF

자기 회귀 웨이블릿 신경 회로망을 이용한 혼돈 시스템의 일반형 예측 제어 (Generalized Predictive Control of Chaotic Systems Using a Self-Recurrent Wavelet Neural Network)

  • 유성진;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.421-424
    • /
    • 2003
  • This paper proposes the generalized predictive control(GPC) method of chaotic systems using a self-recurrent wavelet neural network(SRWNN). The reposed SRWNN, a modified model of a wavelet neural network(WNN), has the attractive ability such as dynamic attractor, information storage for later use. Unlike a WNN, since the SRWNN has the mother wavelet layer which is composed of self-feedback neurons, mother wavelet nodes of the SRWNN can store the past information of the network. Thus the SRWNN can be used as a good tool for predicting the dynamic property of nonlinear dynamic systems. In our method, the gradient-descent(GD) method is used to train the SRWNN structure. Finally, the effectiveness and feasibility of the SRWNN based GPC is demonstrated with applications to a chaotic system.

  • PDF

웨이블렛 변환을 이용한 전력시스템 고장전류의 판별 (Faults Current Discrimination of Power System Using Wavelet Transform)

  • 이준탁;정종원
    • 조명전기설비학회논문지
    • /
    • 제21권3호
    • /
    • pp.75-81
    • /
    • 2007
  • Wavelet 변환은 신호를 분석하고 해석하는데 효과적인 수학적 도구로 알려져 여러 응용분야에서 다양한 연구가 진행되고 있다. Wavelet 변환은 Fourier 변환과 유사한 측면도 있으나, Fourier 변환과는 달리 다양한 Wavelet 모함수를 사용함으로써 해석 속도가 빠르고, 시간-주파수 영역에서 국재화가 가능하다는 특징을 가지고 있을뿐만 아니라 고주파 성분에 대해선 시간 분해능이 높고, 저주파 성분에 대해선 주파수 분해능이 좋다는 장점을 가지고 있으므로, 전력계통의 다양한 고장 전류의 판별에 적극 이용할 수 있을 것으로 생각된다. 본 논문에서는 고장 전류의 특성을 해석하는데 용이한 복소형의 Morlet Wavelet 모함수를 사용하여 전력계통의 고장기록장치로부터 얻어지는 선로의 전류 데이터를 Wavelet 변환하였고, 이로부터 다양한 고장 모드를 판별할 수 있었다. 실험 결과 Wavelet 변환을 이용하여 선로의 고장 모드를 판별하는 것이 기존의 고속 Fourier 변환을 이용하는 것보다 특징점 고찰에 더욱 유용하다는 것을 확인할 수 있었다.

유전 알고리즘을 이용한 웨이브릿 모듈라 신경망의 최적 구조 설계 (Optimal Structure of Wavelet Modular Wavelet Network Systems Using Genetic Algorithm)

  • 최영준;서재용;연정흠;전홍태
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.115-118
    • /
    • 2000
  • In order to approximate a nonlinear function, modular wavelet networks combining wavelet theory and modular concept based on single layer neural network have been proposed as an alternative to conventional wavelet neural networks and kind of modular network. Modular wavelet networks provide better approximating performance than conventional one. In this paper, we propose an effective method to construct an optimal modualr wavelet network using genetic algorithm. This is verified through experimental results.

  • PDF

NEW SELECTION APPROACH FOR RESOLUTION AND BASIS FUNCTIONS IN WAVELET REGRESSION

  • Park, Chun Gun
    • Korean Journal of Mathematics
    • /
    • 제22권2호
    • /
    • pp.289-305
    • /
    • 2014
  • In this paper we propose a new approach to the variable selection problem for a primary resolution and wavelet basis functions in wavelet regression. Most wavelet shrinkage methods focus on thresholding the wavelet coefficients, given a primary resolution which is usually determined by the sample size. However, both a primary resolution and the basis functions are affected by the shape of an unknown function rather than the sample size. Unlike existing methods, our method does not depend on the sample size and also takes into account the shape of the unknown function.

Wavelet 변환을 이용한 고장 전류의 판별에 관한 연구 (A Study on the Application of Wavelet Transform to Faults Current Discrimination)

  • 정종원;조현우;김태우;이준탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.427-430
    • /
    • 2002
  • Recently the subject of "wavelet analysis" has be drawn by both mathematical and engineering application fields such as Signal Processing, Compression/Decomposition, Wavelet-Neural Network, Statistics and etc. Even though its similar to Fourier analysis, wavelet is a versatile tool with much mathematical content and great potential for applications. Especially, wavelet transform uses localizable various mother wavelet functions in time-frequency domain. Therefore, wavelet transform has good time-analysis ability for high frequency component, and has good frequency-analysis ability for low frequency component. Using the discriminative ability is more easy method than other conventional techniques. In this paper, Morlet wavelet transform was applied to discriminate the kind of line fault by acquired data from real power transformation network. The experimental result presented that Morlet wavelet transform is easier,and more useful method than the FFT (Fast Fourier Transform).

IMAGE QUALITY OPTIMIZATION BASED ON WAVELET FILTER DESIGN AND WAVELET DECOMPOSITION IN JPEG2000

  • Quan, Do;Ho, Yo-Sung
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.7-12
    • /
    • 2009
  • In JPEG2000, the Cohen-Daubechies-Feauveau (CDF) 9/7-tap wavelet filter adopted in lossy compression is implemented by the lifting scheme or by the convolution scheme while the LeGall 5/3-tap wavelet filter adopted in lossless compression is implemented just by the lifting scheme. However, these filters are not optimal in terms of Peak Signal-to-Noise Ratio (PSNR) values, and irrational coefficients of wavelet filters are complicated. In this paper, we proposed a method to optimize image quality based on wavelet filter design and on wavelet decomposition. First, we propose a design of wavelet filters by selecting the most appropriate rational coefficients of wavelet filters. These filters are shown to have better performance than previous wavelet ones. Then, we choose the most appropriate wavelet decomposition to get the optimal PSNR values of images.

  • PDF

고차정확도 및 효율적인 전산유체해석을 위한 Adaptive Wavelet (THE ADAPTIVE WAVELET FOR HIGH ORDER ACCURATE AND EFFICIENT COMPUTATIONAL FLUID DYNAMICS)

  • 이도형
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.261-265
    • /
    • 2011
  • An adaptive wavelet transformation method with high order accuracy is proposed to allow efficient and accurate flow computations. While maintaining the original numerical accuracy of a conventional solver, the scheme offers efficient numerical procedure by using only adapted dataset. The main algorithm includes 3rd order wavelet decomposition and thresholding procedure. After the wavelet transformation, 3rd order of spatial and temporal accurate high order interpolation schemes are executed only at the points of the adapted dataset. For the other points, high order of interpolation method is utilized for residual evaluation. This high order interpolation scheme with high order adaptive wavelet transformation was applied to unsteady Euler flow computations. Through these processes, both computational efficiency and numerical accuracy are validated even in case of high order accurate unsteady flow computations.

  • PDF

Wavelet-based damage detection method for a beam-type structure carrying moving mass

  • Gokdag, Hakan
    • Structural Engineering and Mechanics
    • /
    • 제38권1호
    • /
    • pp.81-97
    • /
    • 2011
  • In this research, the wavelet transform is used to analyze time response of a cracked beam carrying moving mass for damage detection. In this respect, a new damage detection method based on the combined use of continuous and discrete wavelet transforms is proposed. It is shown that this method is more capable in making damage signature evident than the traditional two approaches based on direct investigation of the wavelet coefficients of structural response. By the proposed method, it is concluded that strain data outperforms displacement data at the same point in revealing damage signature. In addition, influence of moving mass-induced terms such as gravitational, Coriolis, centrifuge forces, and pure inertia force along the deflection direction to damage detection is investigated on a sample case. From this analysis it is concluded that centrifuge force has the most influence on making both displacement and strain data damage-sensitive. The Coriolis effect is the second to improve the damage-sensitivity of data. However, its impact is considerably less than the former. The rest, on the other hand, are observed to be insufficient alone.

2D wavelet과 이차신경망을 이용한 패턴인식 시스템 (A Pattern Recognition System Using 2D Wavelets and Second-Order Neural Networks)

  • 이봉규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권10호
    • /
    • pp.473-478
    • /
    • 2001
  • Image processings using the two-dimensional wavelet transform (2DWT) have been a very active research area in recent years because the 2DWT possess many good properties. However, the discrete 2DWT can not be used for pattern recognition directly because it does not have the translation property. In this paper, we show why conventional discrete two-dimensional wavelet transforms cannot be used for pattern recognitions directly. Then, we propose a new method that makes it possible to use discrete 2DWT to pattern recognition without modification of standard pyramidal algorithms. The main idea of our method is to postprocess the wavelet transformed images using the second-order neural network. To justify the validity of the method, evaluations with test images were performed. The effectiveness of the method can be shown by the evaluation results.

  • PDF