• Title/Summary/Keyword: wavefront

Search Result 259, Processing Time 0.034 seconds

A Study of Optical Properties of Intraocular Lenses and of Measurement of the Index of Reflection for an Unknown Liquid

  • Joo, Won Don;Jung, Mee Suk
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.236-242
    • /
    • 2012
  • In general, such methods as interferometers or wavefront sensors are commonly used for testing of an optical system and optical components. In these cases, the surrounding environments are unlikely to affect the measurements. On the other hand, intraocular lenses of hydrophilic materials with special properties experience a certain difficulty in testing the optical properties. An intraocular lens is dried in the air, which causes deformation and changes the optical characteristics such as index of refraction and thickness. Thus, it is hard to measure the optical characteristics of an intraocular lens by using common methods. In this study, a special structure is used for measuring of the transmission wavefront aberration and effective focal length of an intraocular lens of hydrophilic materials by using a Shark-Hartmann sensor among the various measuring methods. As an application of this measuring method, this study shows a simple method to measure the index of refraction of unknown liquids with a plano-convex lens with a well known index of refraction. Also, this method is used to measure the optical properties of a plano-convex such as index of refraction and curvature by using a liquid with a well known index of refraction.

Laboratory test of MEMS based astronomical adaptive optics

  • Yu, Hyung-Jun;Park, Yong-Sun;Chae, Jong-Chul;Yang, Hee-Su
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.65.1-65.1
    • /
    • 2011
  • We built a simple Adaptive Optics (AO) system at laboratory. This AO system is a step toward developing AO system for astronomical use. In this step, the AO system consists of He-Ne laser as a artificial light source, wavefront sensor, MEMS (Micro electro mechanical system) type deformable mirror and several lenses. MEMS deformable mirror allows the compact system at low cost and the only several mm sized collimated beam. We made Shack-Hartmann wavefront sensor using a lenslet array and a fast frame CCD. Its performance is verified using an artificial phase disturber and noting the movement of spot images by the lenslet array. The frame rate of the driving software is about 70 fps, depending on the control parameters. The characteristics of MEMS deformable mirror was measured which includes the voltage-to-deflection relation, influence function, and cross-talk. The total system is operated under closed-loop control for the artificial phase disturber and the wavefront is found to be compensated successfully.

  • PDF

Fast-Converging Algorithm for Wavefront Reconstruction based on a Sequence of Diffracted Intensity Images

  • Chen, Ni;Yeom, Jiwoon;Hong, Keehoon;Li, Gang;Lee, Byoungho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • A major advantage of wavefront reconstruction based on a series of diffracted intensity images using only single-beam illumination is the simplicity of setup. Here we propose a fast-converging algorithm for wavefront calculation using single-beam illumination. The captured intensity images are resampled to a series of intensity images, ranging from highest to lowest resampling; each resampled image has half the number of pixels as the previous one. Phase calculation at a lower resolution is used as the initial solution phase at a higher resolution. This corresponds to separately calculating the phase for the lower- and higher-frequency components. Iterations on the low-frequency components do not need to be performed on the higher-frequency components, thus making the convergence of the phase retrieval faster than with the conventional method. The principle is verified by both simulation and optical experiments.

Optimal Design of the Flexure Mount for Optical Mirror Using Topology Optimization Considering Thermal Stress Constraint (열응력 제한조건이 고려된 위상최적화 기법을 이용한 광학 미러 플렉셔 마운트 최적설계)

  • Kyoungho, Lee;Joong Seok, Lee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.561-571
    • /
    • 2022
  • An optical mirror assembly is an opto-mechanically coupled system as the optical and mechanical behaviors interact. In the assembly, a flexure mount attached to an optical mirror should be flexible in the radial direction, but rigid for the remaining degrees of freedom for supporting the mirror rigidly and suppressing the wavefront error of the optical mirror. This work presents an optimal design of the flexure mount using topology optimization with thermal stress constraint. By simplifying the optical mirror assembly into finite shell elements, topology optimization model was built for efficient design and good machinability. The stress at the boundary between the optical mirror and the mount together with the first natural frequency were applied as constraints for the optimization problem, while the objective function was set to minimize the strain energy. As a result, we obtained the optimal design of the flexure mount yielding the improved wavefront error, proper rigidity, and machinability.

Numerical study of compression waves passing through two-continuous ducts (두 연속 덕트를 전파하는 압축파의 수치해석적 연구)

  • Kim, Hui-Dong;Heo, Nam-Geon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

Statistical Analysis of Ranging Errors by using $\beta$-Density Angular Errors due to Heading Uncertainty ($\beta$ - 분포를 갖는 센서의 방향각 오차로 인한 거리 오차의 통계적 분석)

  • 김종성
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1984.12a
    • /
    • pp.100-106
    • /
    • 1984
  • Traditional methods for estimating the location of underwater target, i.e. the triangulation method and the wavefront curvature method, have been utilized. The location of a target is defined by the range and the bearing, which estimates can be obtained by evaluating the time delay between neighboring sensors. Many components of error occur in estimating the target range, among which the error due to the fluctuation of heading angle is outstanding. In this paper, the wavefront curvature method was used. We considered the error due to the heading fluctuation as the $\beta$-density process, from which we analized the range estimates with $\beta$-density function exist in some finite limits, and its mean value and variation are depicted as a function of true range and heading fluctuation. Given heading angles and sensor separation, maximum estimated heading errors are presented as a function of true range.

  • PDF

Aspherical Lens Manufacturing Technology in the Optical Storage Device (광 정보 저장 장치에서의 비구면 렌즈 가공 기술)

  • 이호철;김대식;이철우;김부태;양민양
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.964-967
    • /
    • 2001
  • Aspherical lens with the higher numerical aperture has been needed in the optical storage device to increase the recording density on the disk. However, high numerical aperture means the large slope angle at the clear aperture of the lens. Therefore, the measurement and manufacturing technique including the lens molding process for the slope angle should be developed. In this paper, the evaluation technique was described for the optical performance of the aspherical lens. Aspherical form error brings about the wavefront error and the side lobe of the beam intensity profile. A schematic diagram of the aspherical lens manufacturing was drawn to explain the aspherical form error compensation. Finally, form error of the aspherical lens was defined and plotted using the raw data of the Formtalysurf.

  • PDF

A New Full-Aperture Reflective Null Measuring Method for Conformal Dome

  • Yan, Xudong;Wang, Junhua;Xu, Min
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.174-179
    • /
    • 2016
  • In this paper, a novel full-aperture reflective null measuring method is proposed to detect the transmission wavefront of a conformal dome surface. An aspheric compensator is designed and placed behind the dome to reflect the aspheric testing wave back to the same path. To ensure the feasibility of this method, tolerance analysis is conducted, and guidance to assembly is given accordingly. The accuracy of this method is verified to be λ/30 (λ =3.39 μm) by Monte Carlo algorithm. In addition, the influence of different error factors, including the thickness error and decenter error of the dome, on the testing wavefront is analyzed. Simulation and experiment indicate that this method is practical and simple, and can measure the conformal domes precisely and comprehensively.

Wavefront Measurement of Aspheric Lens with Null CGH (반사형 Null CGH를 이용한 비구면 사출 렌즈의 파면 측정)

  • Lee, Ho-Yeol;Kim, Dae-Chan;Jang, Hyeon-Jun;Lee, Uk-Hui;Song, Jong-Seop;O, Beom-Hwan;Park, Se-Geun;Lee, Il-Hang;Lee, Seung-Geol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.129-130
    • /
    • 2009
  • In order to determine the aberration coefficients of an aspheric lens with a small diameter, its transmitted wavefront was compensated with a null CGH and an auxiliary convex lens. The configuration of the measuring system and the fabrication step of CGHs could be simplified by using a reflective amplitude-type CGH as null optics. The compensated waterfronts of several sample lenses were measured and analyzed, and consequently the performance of the CGH was evaluated.

  • PDF