• Title/Summary/Keyword: wavefront

Search Result 259, Processing Time 0.024 seconds

Performance Analysis of the reconstruction Algorithms in the Stripmap-mode SAR (Stripmap-mode SAR에서의 영상복원 알고리즘의 성능분석)

  • 박현복;김형주;최정희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.29-33
    • /
    • 2000
  • The classical image reconstruction for stripmap SAR is based on the Fresnel approximation which utilizes deramping or chirp deconvolution in the synthetic aperture(slow-time) domain. Another approach in formulating stripmap SAR processing and imaging is based on the SAR wavefront reconsturction theory, and analysis of the SAR signal in the slow-time via the spherical wave Fourier decomposition of the radar radiation pattern. In this paper, we compare the Fresnel approximation and the wavefrong reconstruction methods using simulated stripmap SAR dada.

  • PDF

A review on several methods for fast generation of digital Fresnel holograms

  • Tsang, P.W.M.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.29-32
    • /
    • 2012
  • Computer generated holography (CGH) is technology for generating holograms of synthetic, three dimensional (3D) objects which may not exist in the physical world. The process, however, requires heavy amount of computation as the resolution of a hologram is significantly higher than that of a typical optical image. This paper reviews four modern techniques for fast generation of digital Fresnel holograms which are important in the development of holographic video systems. The methods that will be described include the virtual window, sub-line, wavefront recording plane (WRP), and the interpolative WRP schemes. These works share the common objective to generate digital Fresnel hologram at a speed that is close to the video frame rate, and with complexity which is realizable with affordable computing and reconfigurable hardware devices. The author will present the principles and realization of these works, as well as some potential area of research in digital holography.

Effect of Train Shape on a Compression Wave Generated by a Train Moving into a Tunnel

  • Ogawa Takanobu;Fujii Kozo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.30-36
    • /
    • 1995
  • An axisymmetric flow induced by a train moving into a tunnel is numerically simulated. The effect of train shape on wavefront of a compression wave created by a train is investigated parametrically using several model trains having the same nose shape but different blockage. The zonal method combined with the Fortified Solution Algorithm (FSA) is employed as a numerical algorithm to solve this moving body problem. The computational result is compared with the experimental data. Good agreement is obtained, which justifies the present computational approach. The compression waves created by the model trains are compared and the result shows that the pressure gradient of the wavefront of the compression wave becomes small in the case of small blockage even though the nose shape is same. The wavefront is not determined solely by the cross-sectional area distribution of the train nose.

  • PDF

The Tip-Tilt Correction System in AO System for Small Telescope

  • Yu, Hyungjun;Park, Yong-Sun;Lee, Bangweon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.219.2-219.2
    • /
    • 2012
  • We are developing Adaptive Optics (AO) system for 24 inch telescope at Seoul National University Observatory. It consists of the tip-tilt correction system and the residual wavefront error correction system with a deformable mirror and a wavefront sensor. We present the construction and performance measurements of the tip-tilt correction system. The tip-tilt component is the single largest contributor to wavefront error, especially for small telescope. The tip-tilt correction system consists of a quadrant photodiode, a tip-tilt mirror and a feed back loop. The collimated He-Ne laser beam is used for input light source and is artificially disturbed by air turbulence generated by a heat gun. Most of the turbulence is of low frequency less than 20 Hz, but extends to a few hundreds Hz. It is found that the closed loop system using proportional-integral-derivative (PID) control successfully corrects tip-tilt error at a rate as high as 300~400 Hz.

  • PDF

A Study on the Optical Image Restoration end Reflectivity of Reflection Hologram Type by Degenerate Four Wave Mixing (축퇴 4광파 혼합에 의한 광영상 복원과 R.H.T의 반사율에 관한 연구)

  • Kim, Soo-Kyung;Park, Kwang-Chul;Kim, In-Eung;Kim, Eun-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.90-93
    • /
    • 1987
  • Phase conjugate wavefront generation via real-time holography in degenerate four-wave mixing experiments in photo-refractive crystal $Bi_{12}$ Si $O_{20}$ is presented. Depending on the respective values of applied field $E_o$ and fringe spacing, drift or diffusion of the photecarriers dominates the space-charge buildup and affects the Phasa- Conjugate Wavefront intensity. The experimental results for wavefront reflectivity as a function of the intensity ratio of the writing beams agree with the theoretical predictions.

  • PDF

Design of online damage images detection system for large-aperture mirrors of high power laser facility based on wavefront coding technology

  • Fang, Wang;Qinxiao, Liu;Dongxia, Hu;Hongjie, Liu;Tianran, Zheng
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.2899-2908
    • /
    • 2021
  • The laser transport system of the high power laser facility is mainly composed of large-aperture laser transport mirrors (TMs). Obtaining the high-resolution online damage images during the operation, which is of great significance for operating safely of the mirrors and the facility. Based on wavefront coding, pan-tilt scanning and image stitching technologies, an online laser-damage images detection system is designed, and it can achieve high-precision detection of surface characteristics of large-aperture laser transport mirrors. The preliminary simulation proves that the system can solve the depth of field matching problem caused by pan-tilt tilt imaging and achieve higher resolution.

Improved Iterative Method for Wavefront Reconstruction from Derivatives in Grid Geometry

  • Nguyen, Vu-Hai-Linh;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • This paper proposes a robust, simple zonal wavefront-estimation method in a grid sampling model. More slopes are added to the integral equation of the algorithm to improve the accuracy and convergence rate of this approach, especially for higher-order optical aberrations. The Taylor theorem is applied to clarify the mathematical description of the remaining error in the proposed method. Several numerical simulations are conducted to ensure the performance and improvement in comparison to the Southwell and previous algorithm. An experiment is also conducted according to deflectometry output and the results are verified using a reference measured with a stylus system.

Predictive Control Algorithms for Adaptive Optical Wavefront Correction in Free-space Optical Communication

  • Ke, Xizheng;Yang, Shangjun;Wu, Yifan
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.641-651
    • /
    • 2021
  • To handle the servo delay in a real-time adaptive optics system, a linear subspace system identification algorithm was employed to model the system, and the accuracy of the system identification was verified by numerical calculation. Experimental verification was conducted in a real test bed system. Through analysis and comparison of the experimental results, the convergence can be achieved only 200 times with prediction and 300 times without prediction. After the wavefront peak-to-valley value converges, its mean values are 0.27, 4.27, and 10.14 ㎛ when the communication distances are 1.2, 4.5, and 10.2 km, respectively. The prediction algorithm can effectively improve the convergence speed of the peak-to-valley value and improve the free-space optical communication performance.

Development of adaptive optics system for SNUO 1m telescope

  • Ryu, Hyungjoon;Park, Yong-Sun;Seo, Jin-guk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.67.1-67.1
    • /
    • 2020
  • Adaptive Optics (AO) is the technology for ground-based telescopes to overcome the interference caused by atmospheric turbulence. We are developing an AO system for the 1-m telescope at Seoul National University Observatory (SNUO). The seeing size of the SNUO is 2 arcseconds on average, and 0.85 arcseconds at best condition. Our system is based on MEMS deformable mirror and Shack-Hartmann wavefront sensor. We developed the wavefront sensor using a cheap CMOS camera, and measured phase disturbance at SNUO. To verify the performance of the AO system, we designed an artificial phase disturber that produces similar scale phase error, measured at SNUO. We carried out laboratory tests in which the AO system measures and corrects the wavefront using the phase disturber and an F/6 light source, the same as that of SNUO telescope. The control system was developed in C++. The system performs closed-loop PI correction up to 100 Hz at a consumer-grade PC.

  • PDF

A Study on the Improvement of Wavefront Sensing Accuracy for Shack-Hartmann Sensors (Shack-Hartmann 센서를 이용한 파면측정의 정확도 향상에 관한 연구)

  • Roh, Kyung-Wan;Uhm, Tae-Kyoung;Kim, Ji-Yeon;Park, Sang-Hoon;Youn, Sung-Kie;Lee, Jun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.383-390
    • /
    • 2006
  • The SharkHartmann wavefront sensors are the most popular devices to measure wavefront in the field of adaptive optics. The Shack-Hartmann sensors measure the centroids of spot irradiance distribution formed by each corresponding micro-lens. The centroids are linearly proportional to the local mean slopes of the wavefront defined within the corresponding sub-aperture. The wavefront is then reconstructed from the evaluated local mean slopes. The uncertainty of the Shack-Hartmann sensor is caused by various factors including the detector noise, the limited size of the detector, the magnitude and profile of spot irradiance distribution, etc. This paper investigates the noise propagation in two major centroid evaluation algorithms through computer simulation; 1st order moments of the irradiance algorithms i.e. center of gravity algorithm, and correlation algorithm. First, the center of gravity algorithm is shown to have relatively large dependence on the magnitudes of noises and the shape & size of irradiance sidelobes, whose effects are also shown to be minimized by optimal thresholding. Second, the correlation algorithm is shown to be robust over those effects, while its measurement accuracy is vulnerable to the size variation of the reference spot. The investigation is finally confirmed by experimental measurements of defocus wavefront aberrations using a Shack-Hartmann sensor using those two algorithms.