• Title/Summary/Keyword: wave-overtopping

Search Result 143, Processing Time 0.02 seconds

Wave Overtopping Formula for Impulsive and Non-Impulsive Wave Conditions against Vertical Wall (충격파 및 비충격파 조건에서 직립식구조물의 월파량산정식)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • In this study, two dimensional wave overtopping tests for vertical wall were performed and overtopping formulas were suggested for impulsive and non-impulsive wave conditions. The test results from this study were compared with those from EurOtop(2007). The wave overtopping formulas were derived and suggested considering the recent research trends, while the existing method used the diagram. The wave overtopping formulas have the form of exponential and power functions using non-dimensional variables for wave overtopping and freeboard heights for non-impulsive and impulsive condition, respectively. The wave overtopping formula and effective parameters for inclined superstructure were also suggested. It is analyzed that the locations of inclined superstructure do not have the significant effects on wave overtopping, that is, the wave overtopping rate were almost same for each locations.

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.

Wave Overtopping Reduction Coefficient of Vertical Wall for Obliquely Incident Waves (경사입사파에 대한 직립구조물에서의 월파량 저감계수)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik;Ha, Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • The existing formula for estimating the wave overtopping are mainly about the perpendicularly incident wave to the structure and wave overtopping formula for the obliquely incident wave are rare. Moreover, these formula present only the overtopping reduction factor(${\gamma}_{\beta}$) with respect to the incident wave angle rather than the spatial distribution of overtopping along the structures because the length of model is relatively too short for the wave to propagate along the structure. In this study, the wave overtopping reduction factor considering the spatial variation of wave overtopping along the vertical wall is investigated using the hydraulic model tests and the results are compared with the those of EurOtop(2007). The wave overtopping reduction factor is modified for ${\beta}$ > $45^{\circ}$ condition.

A study on characteristics of overtopping rate with Berm's size at the low crest breakwater (저천단 방파제에서의 소단규모에 따른 월파특성에 관한 연구)

  • Kim, Hong-Jin;Jeon, Yong-Ho;Ryu, Cheong-Ro
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.113-118
    • /
    • 2002
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. The hydrodynamic characteristics of low crest breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures. 2. Maximum overtopping rate was increase with wave steepness (between 0.01 and 0.02). 3. Overtopping rate is decreased when relation length of berm was over wave length.

  • PDF

An Experimental Study of Wave Overtopping Characteristics on the Structure for Wave Overtopping Power Generating System (월파형 파력발전구조물의 월파 특성에 관한 실험적 연구)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.30 no.8 s.114
    • /
    • pp.649-655
    • /
    • 2006
  • Waves progressing into the coastal area can be amplified, swashed and overtopped by a wave overtopping control structure, and it converts the kinetic energy of the waves to the potential energy with a hydraulic head above the mean sea level by conserving the overflow in a reservoir. Then the potential energy in the form of hydraulic head can be converted to electric power utilizing extremely low-head hydraulic turbine. This study aims to find the most optimal shape of wave overtopping structure which maximizes overtopping volume rate of sea water. Laboratory experiments for the performance evaluation of wave overtopping control structures were carried out in three dimensional wave tank, and the three dimensional structure models with planar wave concentration shapes(B/b) were manufactured into five classes, which were optimized by cross sectional parameters of the structure, ie, length of ramp(l), gradient of inclined ramp($cot{\phi}$) and freeboard height of the wave overtopping structure($h_e$) proposed by Shin and Hong(2005). The wave overtopping discharges were investigated with 20 incident wave conditions and wave directions of $0^{\circ},\;15^{\circ},\;30^{\circ}$.

Expected Overtopping P개bability Considering Real Tide Occurrence

  • Kweonl, Hyuck-Min;Lee, Young-Yeol;Oh, Young-Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.479-483
    • /
    • 2004
  • A new calculation method of expected overtopping probability of rubble mound breakwater considering real tide occurrence has been proposed. A calculation method of expected overtopping probability of rubble mound breakwater was proposed by Kweon and Suh (2003). In their calculation, the fluctuation of tidal elevation was expressed by the sinusoidal change that yields the uniform distribution of occurrence frequency. However, the realistic distribution of tidal elevation should influence on the overtopping chance. In this study, the occurrence frequency of tidal elevation obtained from the real sea is included. The tidal elevation used in this study is collected from the east coastal part of Korean peninsular. Analyzing the annual data of the tidal fluctuation measured hourly during 355 days, the distribution of occurrence frequency is formulated utilizing by the normal distribution with one peak. Among the calculation procedures of annual maximum wave height, wave height-period joint distribution, wave run-up height and occurrence frequency of tide, only the annual maximum wave height is again chosen randomly from normal distribution to consider the uncertainty. The others are treated by utilizing the distribution function or relationship itself, It is found that the inclusion of the variability of tidal elevation has great influence on the computation of the expected overtopping probability of rubble mound breakwater. The bigger standard deviation of occurrence frequency is, the lower the overtopping probability of rubble mound breakwater is.

  • PDF

Effect of the Shape of Absorbing Revetment on Wave Overtopping Rate (소파호안의 형상이 월파량에 미치는 영향)

  • Hur, Dong-Soo;Choi, Dong-Seok;Choi, Sun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2008
  • The present study numerically investigates the effect of the shape of absorbing revetment on wave overtopping rate under regular and irregular incident waves. At first, the numerical model developed by Hur and Choi(2008), which considers the flow through a porous medium with inertial, laminar and turbulent resistance terms, directly simulates Wave-Structure-Sandy seabed interaction and can determine the eddy viscosity with LES turbulent model in 2-Dimensional wave field (LES-WASS-2D), is validated when compared to experimental data. Numerical simulations are then performed to examine the effect of the shape of absorbing revetment and incident wave conditions on wave overtopping rate. The numerical result shows that the wave overtopping rate decreases with the slope gradient of absorbing revetment under both regular and irregular waves. In addition, the effects of mean grain size and porosity of absorbing revetment, incident wave period and crest height on wave overtopping rate are discussed.

Numerical Simulation of Fully Nonlinear Free-Surface Flow around Seawall with Slope (경사면을 갖는 월파형 구조물 주위의 비선형성 자유표면류의 수치 시뮬레이션)

  • Park, Jong-Chun;Park, Dong-In;Lee, Sang-Beom;Hong, Gi-Yong;Sun, Sung-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.18-24
    • /
    • 2005
  • Wave overtopping is one of the most important processes for the design of seawalls. The term "wave overtopping" is used here to refer to the processes where waves hit a sloping structure run up the slope and, if the crest level of the slope is lower than the highest run up level, overtop the structure. Wave overtopping is dependent on the processes associated with breaking wave. A numerical model based on Navier-Stokes equation and the Marker-density function for predicting wave overtopping of coastal structures is developed in this paper. In order to evaluate the present model, two simulations are tested. One is overflow without waves at vertical seawall, and the other is wave overtopping at sloping seawalls.

Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping (월파를 허용하는 투과성 방파제의 파랑변형에 관한 수치해석)

  • 김도삼;이광호
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-5
    • /
    • 2002
  • In the past, ports have been mainly developed in natural harbors but nowadays ports are built wherever they can be economically justified. Therefore, construction of breakwater in area that establishment of structure is disadvantageous is risen according to the change of conditions to the location for ports. In case of building gravity breakwater in such point, need that plane shapes of more reasonable section permitting wave overtopping is necessary. One of the earliest methods for solving unsteady incompressible flow including free surfaces is the MAC(Marker And Cell) method by Harlow and Welch (1965). Recently. VOF(Volume Of Fluid) method to improve several drawbacks of MAC method is suggested by Hirt and Nichols(1981) and utilized extensively in fields of hydrodynamics. Wave overtopping phenomenon is simulated including wave breaking for permeable breakwater by numerical analysis and investigated features of wave overtopping behind structure using VOF method.

Probabilistic Assessment of Wave Overtopping of Seawall at Busan, Korea (부산 신항 방파제의 월파 확률 평가)

  • Qie, Luwen;Choi, Byung-Ho;Xie, ShiLeng
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.176-183
    • /
    • 2008
  • In this paper, three classical overtopping models: Owen model, Van der Meer & Janssen model and Hedges & Reis model were used to calculate the failure probability of wave overtopping of seawalls. Among of them, the Hedges & Reis model was regarded as a moderate method to analyze the failure probability of wave overtopping of seawalls and the probabilistic assessments of wave overtopping were carried out for a constructing seawall at Busan in Korea by Level II and Level III reliability methods. Considering the cost of construction, an appropriate crest level was proposed for a certain rate of wave overtopping at a lower failure probability.