• Title/Summary/Keyword: wave treatment

Search Result 568, Processing Time 0.032 seconds

A Study on the Reflection of Rabbit Nervous Tissue After Electromagnetic Irradiation and the Effect of Nimodipine Injection (전자파에 노출된 토끼의 뇌신경조직의 반응과 Nimodipine 투여효과에 관한 연구)

  • 이근호;김영태
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.81-90
    • /
    • 1998
  • Electromagnetic waves may induce various effects on nervous tissues either by thermal or non-thermal mechanisms. This paper intoduces a method to evalute the non-thermal effect to central nervous system by measuring the EEGs of the rabbits treated by nimodipine before exposed to weak microwave field. 20 rabbits were divided into 2 groups and their EEGs were measured after their head section were exposed to 2,450 MHz microwave with the power density of 10 dBm and 20 dBm respectively for 10 minutes and compared with those of the 3rd group of 10 rabbits which were not exposed. The 4th group of 10 rabbits were intravenously given with nimodipine before exposed to 20 dBm field to determine whether this drug would reverse the EEGs changes induced by weak microwave irradiation. As field poser exceeded 20 dBm although no significant physiological changes were observed, total induced EEGs power was remarkably decreased suggesting the presence of CNS activation. Using Fourier analysis on the EEGs signal it was found that remarkable decrease in delta band and increase in the alpha and beta bands in a significant manner(P<0.05) compared to control group. The changes were, however, not reversed by nimodipine-treatment. The effects may be pure thermal in nature because no significant change has been observed in nimodipine treated rabbits.

  • PDF

Spectra Responsibility of Quantum Dot Doped Organic Liquid Scintillation Dosimeter for Radiation Therapy

  • Kim, Sung-woo;Cho, Byungchul;Cho, Sangeun;Im, Hyunsik;Hwang, Ui-jung;Lim, Young Kyoung;Cha, SeungNam;Jeong, Chiyoung;Song, Si Yeol;Lee, Sang-wook;Kwak, Jungwon
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.226-231
    • /
    • 2017
  • The aim is to investigate the spectra responsibilities of QD (Quantum Dot) for the innovation of new dosimetry application for therapeutic Megavoltage X-ray range. The unique electrical and optical properties of QD are expected to make it a good sensing material for dosimeter. This study shows the spectra responsibility of toluene based ZnCd QD and PPO (2.5-diphenyloxazol) mixed liquid scintillator. The QDs of 4 sizes corresponding to an emission wavelength (ZnCdSe/ZnS:$440{\pm}5nm$, ZnCdSeS:470, 500, $570{\pm}5nm$) were utilized. A liquid scintillator for control sample was made of toluene, PPO. The Composition of QD loaded scintillators are about 99 wt% Toluene as solvent, 1 wt% of PPO as primary scintillator and 0.05, 0.1, 0.2 and 0.4 wt% of QDs as solute. For the spectra responsibility of QD scintillation, they were irradiated for 30 second with 6 MV beam from a LINAC ($Infinity^{TM}$, Elekta). With the guidance of 1.0 mm core diameter optical fiber, scintillation spectrums were measured by a compact CCD spectrometer which could measure 200~1,000 nm wavelength range (CCS200, Thorlabs). We measured the spectra responsibilities of QD loaded organic liquid scintillators in two scintillation mechanisms. First was the direct transfer and second was using wave shifter. The emission peaks from the direct transfer were measured to be much smaller luminescent intensity than based on the wavelength shift from the PPO to QDs. The emission peak was shifted from PPO emission wavelength 380 nm to each emission wavelength of loaded QD. In both mechanisms, 500 nm QD loaded samples were observed to radiate in the highest luminescence intensity. We observed the spectra responsibility of QD doped toluene based liquid scintillator in order to innovate QD dosimetry applicator. The liquid scintillator loading 0.2 wt% of 500 nm emission wavelength QD has most superior responsibility at 6 MV photon beam. In this study we observed the spectra responsibilities for therapeutic X-ray range. It would be the first step of innovating new radiation dosimetric methods for radiation treatment.

Factors affecting on Health-Related Quality Of Life Among Cancer Survivors: Focusing on Gender Difference (암생존자의 건강관련 삶의 질에 대한 영향 요인 -성차를 중심으로)

  • Lee, In-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.497-507
    • /
    • 2018
  • Objectives: The purpose of this article was to evaluate the health related quality of life (HRQoL) of cancer survivors and to identify its predictors according to gender. Methods: The research was conducted with the data for 203 (cancer survivors?) taken from the 6th wave of the Korea National Health and Nutrition Examination Survey and the EQ-5D index score was used for the measurement of the health-related quality of life (HRQoL). The independent variables inluded socio-demographic data, health related factors (survival duration, disability, subjective health recognition), and psychosocial factors (stress, unmet medical needs). The data were analyzed by the t-test, ANOVA, and hierarchical multiple regression analysis. Results: the HRQoL of the female cancer survivors was significantly worse than that of the males in terms of their mobility, usual activities, pain/discomfort and anxiety/depression quality of life. The only statistically significant factor affecting the HRQoL of the male cancer survivors was their subjective health recognition. In the case of the female cancer survivors, the statistically significant factors were their age, subjective health recognition and unmet medical needs. Conclusions: the results of this study showed a different pattern of predictors according to the gender of the cancer survivors. Therefore, gender should be considered when assessing and addressing the individual care needs of cancer survivors, in order to obtain optimal treatment outcomes.

Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals (오염된 해양퇴적물 내 Cd, Cr, Cu, Zn의 용출차단과 안정화를 위한 천연 제올라이트와 모래 피복의 적용)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • We investigated the effectiveness of natural zeolite (NZ) and sand (SD) as a capping material to block the release of heavy metals (Cd, Cr, Cu, and Zn) from heavily contaminated marine sediments and stabilize these heavy metals in the sediments. The efficiency of NZ and SD for blocking trace metals was evaluated in a flat flow tank attached with an impeller to generate wave. 0, 10, 30, and 50 mm depth of NZ or SD were capped on the contaminated marine sediments and the metal concentration in seawater was monitored. After completion of flow tank experiments, sequential extractions of the metals in the sediment below the capping material were performed. The difference of pH, EC, and DO concentration between uncapped and capped condition was not significant. The release of cations including Cd, Cu, and Zn were effectively blocked by NZ and SD capping but the interruption of Cr release was observed only in 50 mm depth of SD capped condition. However, the stabilization of Cr in 50 mm depth of SD capped condition was not achieved when compared to uncapped condition. NZ and SD capping were effective for stabilizing Cd, Cu, and Zn in marine sediments. It is concluded that the use of NZ with SD as a capping material is recommended for blocking Cd, Cr, Cu, and Zn release and stabilizing them in contaminated marine sediments.

The Effects of Interactive Metronome on Short-term Memory and Attention for Children With Mental Retardation (상호작용식 메트로놈(Interactive Metronome: IM) 훈련이 지적장애 아동의 집중력과 단기기억력에 미치는 영향)

  • Bak, Ah-Ream;Yoo, Doo-Han
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.14 no.1
    • /
    • pp.19-30
    • /
    • 2016
  • Objective : The purpose of this study was to identify the effects of Interactive Metronome (IM) training on short-term memory and attention for children with mental retardation. Methods : For this study, single-subject experimental research was conducted using an ABA design. We observed two children, twice a week for 9 weeks, which was 18 sessions in total. We evaluated the children's brain waves without intervention and the child's pseudo randomly selected sample of one short-term memory task as assessed in the baseline A phase for three sessions. In the intervention phase the children received 40-50 minutes of Interactive Metronome training twice a week, a total of 12 sessions. The short-term memory test and long form test as assessed after treatment, without brain wave in short form test measuring. During the baseline A phase, data were collected using the same procedure as the baseline A phase. Results : After the interactive metronome training, positive changes was observed in brain waves, attentions and short-term memory. Conclusion : The results of this study expect that IM training has a potential for improving cognitive functions of children with mental retardation. In addition, the results of this study can be used as basic data in attention and short-term memory of occupational therapy intervention for children with mental retardation.

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

Observation of Acoustic Characteristic Change in bubble cloud by Ultrasonic Cavitation (초음파 캐비테이션에 의한 기포군에서의 음향특성 변화관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.351-356
    • /
    • 2012
  • Ultrasonic cavitation is a physical phenomenon that generates and collapses microbubbles in media (mainly fluids) under conditions of strong ultrasonic irradiation. In this study, changes in the ultrasonic acoustic characteristics of bubble clouds in relation to ultrasonic irradiation were observed by the quantitative evaluation of cavitation yields. Concave-type single ultrasonic transducers with center frequencies of 500 kHz and 1.1 MHz were used to produce cavitation, and 2.25 MHz interference ultrasonic waves that would traverse any bubble clouds generated were used to analyze the cavitation. The parameters used for the evaluation of cavitation yields (changes in the center frequency, attenuation characteristics, and the propagation time of penetrating waves) were analyzed in relation to the cavitation-generating conditions (irradiation intensity, excitation signal, and center frequency). On the basis of these results, correlations between the changes in the center frequency and irradiation intensity were identified. Although the correlation coefficient was low, notable changes were observed in the center frequency under certain irradiation conditions. Attenuation trends in the interference ultrasonic waves showed high correlations with all the irradiation conditions, and it was noted that these trends were not affected by the forms of cavitation generated. No differences in the propagation time were observed among different irradiation conditions. These findings suggest that bubble yields can be quantitatively evaluated effectively by evaluating the diverse irradiation conditions and that such a quantitative evaluation could be used to study the basic cavitation phenomenon occurring in high-intensity ultrasonic wave treatment.

The Study on Wound Healing in Rabbit Skins by Low-intensity Laser Irradiation (저강도 레이저 조사에 의한 가토 피부의 상처 치유에 관한 연구)

  • 김식현;전진석
    • Biomedical Science Letters
    • /
    • v.6 no.2
    • /
    • pp.119-129
    • /
    • 2000
  • The skin is an organ that has many important roles, including protection against infection, regulation of temperature and fluid loss, and sensory function. Injury to the skin, wound repair normally involves: (1) balanced activity of inflammation, (2) the re-epithelial phase and (3) the matrix formation of remodeling phase. Thus, skin wound healing is a finely controlled biological process involving a series of complex cellular interactions. Laser therapy is being implemented with increasing frequency in medicine. Low intensity laser is one that is capable of producing an energy density so low that any biologic alterations are the result of direct irradiation effect, not thermal events. This study was designed to evaluate the efficacy of low intensity laser therapy on skin wound healing in rabbits. A total of 10 male rabbits (New Zealand White Rabbit), age 8 weeks were used. Skin wound were surgically created dorso-lateral on the flank of 10 rabbits (2$\times$2 cm/damage areas). The experimental animals were treated with 5Hz (830 nm wave length) low-intensity laser (MILTA-01 Model) daily for 10 min (1.6 J/$cm^2$) for 12 days. Control animals were sham treated with the laser head. Laser irradiation animals showed a complete remodeling of the epithelial layer, a positive repair of connective tissues, and enhanced the wound closure rate over time as compared to the control animals. Especially, laser irradiation groups improved fibroblast activity, cellular content, granulation tissue formation, and collagen deposition which is resulted in improving the tensile strength of the wound. These findings suggest that laser photostimulation could accelerate healing of open wound in rabbits, and may be benefit in the treatment of open wound, including decubitis ulcers.

  • PDF

Brain wave results in children with attention deficit hyperactivity disorder and treatment result with central nervous system stimulants (주의력결핍 과잉행동장애 환아에서 시행한 뇌파 결과 및 중추신경자극제 치료에 따른 결과)

  • Lim, Young Su;Sim, Ji Yun;Son, Jung-Woo;Kim, Won Seop
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.12
    • /
    • pp.1324-1328
    • /
    • 2008
  • Purpose : Attention deficit hyperactivity disorder (ADHD) is a syndrome characterized by inattention, impulsive disruptive behavior, impaired concentration, and motor restlessness. This study examined the relationships among electroencephalographic (EEG) findings, stimulant use, and seizure occurrence in children with ADHD. Methods : We retrospectively studied 308 children with ADHD who visited the neuropsychiatric clinic of our hospital from January 2001 to December 2005. We retrospectively analyzed age distribution, etiology, abnormal EEG findings, and use of CNS stimulants. Among these children, brain waves was recorded in 84 patients. Results : Eighty-four children (72 males, 85.7%, 9.3 years mean age; 12 females, 14.3%, 8.0 years mean age) with ADHD had electroencephalograms (EEGs) performed at our institute. Nineteen patients (22.6%) demonstrated epileptiform abnormalities, and 65 (77.4%) demonstrated normal EEGs. Stimulant therapy was applied to 59 of 84 patients (70.2%). Seizures occurred in 1 of 65 patients with a normal EEG (incidence, 1.5%) and 3 of 19 treated patients with epileptiform EEGs (incidence, 15.7%). Conclusion : These data suggest that patients with normal EEGs have minor risk for seizure. In contrast, patients with epileptiform EEGs have higher risk for seizure than patients with normal EEGs.

A Study on the High Frequency Ultrasonic Attenuation Characterization in Artificially Aging Degraded 2.25Cr-1Mo Steel (2.25Cr-1Mo 강 인공 열화재의 고주파수 초음파 감쇠특성에 관한 연구)

  • Park, Ik-Keun;Park, Un-Su;Kim, Chung-Seok;Kim, Hyun-Mook;Kwun, Sook-In;Byeon, Jai-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.4
    • /
    • pp.439-445
    • /
    • 2001
  • The destructive method is reliable and widely used lot the estimation of material degradation but, it have time-consuming and a great difficulty in preparing specimens from in-service industrial facilities. Therefore, the estimation of degraded structural materials used at high temperature by nondestructive evaluation such as electric resistance method, replica method, Barkhausen noise method, electro-chemical method and ultrasonic method are strongly desired. Ultrasonic nondestructive evaluation technique has been reported good to attain efficiency of measurement, high sensitivity of measurement, and rapidity and reliability of result interpretation. In this study, it was verified experimentally the feasibility of the evaluation of degraded 2.25Cr-1Mo steel specimens which were prepared by the isothermal aging heat treatment at $630^{\circ}C$ by high frequency longitudinal wave method investigating the change of attenuation coefficient by FFT analysis and wavelet transform. Because of carbide precipitation increase and spheroidization near grain boundary of microstructure to aging degradation, attenuation coefficient had a tendency to increase as degradation proceeded. It was identified possibly to evaluate degradation using the characteristics of high-frequency ultrasonics. Frequency dependence of ultrasonic attenuation coefficient to aging degradation appeared large, which made sure that attenuation coefficient is an important parameter for evaluation of aging degradation.

  • PDF