• Title/Summary/Keyword: wave structure

Search Result 2,798, Processing Time 0.032 seconds

Evaluation of Performance Based Design Method of Concrete Structures for Various Climate Changes (다양한 기후변화에 따른 콘크리트 구조물의 성능중심형 설계 평가)

  • Kim, Tae-Kyun;Shim, Hyun-Bo;Ahn, Tae-Song;Kim, Jang-Ho Jay
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • Currently, global warming has advanced by the usage of fossil fuels such as coal and petroleum. and the atmosphere temperature in the world of 100 years(1906~2005) has been risen $0.74^{\circ}C{\pm}0.18^{\circ}C$, IPCC announced that the global warming effect of last decade was nearly doubled compared to the changes($0.07^{\circ}C{\pm}0.02^{\circ}C$/10year) in the past 100 years. Moreover, due to the global warming, heat wave, heavy snow, heavy rain, super typhoon, were caused and are increasing to happen in the world continuously causing damages and destruction of social infrastructures, where concrete structures are suffering deterioration by long-term extreme climate changes. to solve these problems, the new construction technology and codes are necessary. In this study, to solve these problems, experiments on a variety of cases considering the temperature and humidity, the main factors of climate factors, were performed, and the cases are decided by temperature and humidity. The specimens were tested in compressive strength test and split tensile test by the curing age(3,7,28 days) morever, performance based design(PBD) method was applied by using the satisfaction curve developed from the experiment date. PBD is the design method that gathers the current experimental analysis and past experimental analysis and develops the material properties required for the structure, and carries out the design of concrete mix, and it is recently studied actively worldwide. Also, it is the ultimate goal of PBD to design and perform on structures have sufficient performance during usage and to provide the problem solving for various situations, Also, it can achieve maximum effect in terms of functionality and economy.

Moho Discontinuity Studies Beneath the Broadband Stations Using Receiver Functions in South Korea (수신함수를 이용한 남한의 광대역 관측망 하부의 Moho 불연속면 연구)

  • Kim, So-Gu;Lee, Seong-Kyu
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.1 s.1
    • /
    • pp.139-155
    • /
    • 2001
  • We investigate the vertical velocity models beneath the newly installed broadband seismic network of KMA (Korea Meteorological Administration) by using receiver function inversion technique. The seismic phases are primarily P-to-S conversions and reverberations generated at the two highest impedance interfaces like the Moho (crust-mantle boundary) and the sediment-basement contact. We obtained the teleseismic P-wave receiver functions, which were derived from teleseismic records of Seoul (SEO), Inchon (INCN), Tejeon (TEJ) , Sosan (SOS/SES), Kangnung (KAN), Ulchin (ULC/ULJ), Taegu (TAG), Pusan (PUS), and Ullung-do (ULL) stations. For Kwangju (KWA/KWJ) and Chunchon (CHU) stations, the Moho conversion Ps arrivals and waveforms of radial receiver functions are azimuthally inconsistent and unclear. From the receiver function inversion result, we found that crustal thickness is 29 km at INCN, SEO, and SOS (SES) stations, 28 km at KAN station in the Kyonggi Massif, 32 km at TEJ station in Okchon Folded Belt, 34 km at TAG, 33 km at PUS station in the Kyongsang Basin, 32 km at KWJ station (readjusted station by prior KWA station) included in the Youngdong-Kwangju Depression Zone, 28 km at ULC station in the eastern margin of the Ryongnam Massif, and 17 km at ULL station in the Ullung Island of the East Sea, respectively. The Moho configuration of INCN, SOS, KWJ, and KAN stations show a laminated smooth transition zone with a 3-5 km thick. The upper crusts(${\sim}5km$) of KAN, ULC, and PUS stations show complex structures with a high velocity. The unusually thick crusts are found at the TAG and PUS stations in the Kyongsang Basin compared to the thin (29-32 km) crust of the western part (INCN, SEO, SOS, TEJ, and KWA stations) The crustal thickness beneath Ullung Island (ULL station) shows the suboceanic crust with about 17 km thickness and complex with a high velocity layer of the upper crust, and the amplitudes of Incoming Ps waves from the western direction are relatively large compared to those from othor directions.

  • PDF

Motion Analysis of Light Buoys Combined with 7 Nautical Mile Self-Contained Lantern (7마일 등명기를 결합한 경량화 등부표의 운동 해석)

  • Son, Bo-Hun;Ko, Seok-Won;Yang, Jae-Hyoung;Jeong, Se-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.628-636
    • /
    • 2018
  • Because large buoys are mainly made of steel, they are heavy and vulnerable to corrosion by sea water. This makes buoy installation and maintenance difficult. Moreover, vessel collision accidents with buoys and damage to vessels due to the material of buoys (e.g., steel) are reported every year. Recently, light buoys adopting eco-friendly and lightweight materials have come into the spotlight in order to solve the previously-mentioned problems. In Korea, a new lightweight buoy with a 7-Nautical Mile lantern adopting expanded polypropylene (EPP) and aluminum to create a buoyant body and tower structure, respectively, was developed in 2017. When these light buoys are operated in the ocean, the visibility and angle of light from the lantern installed on the light buoys changes, which may cause them to function improperly. Therefore, research on the performance of light buoys is needed since the weight distribution and motion characteristics of these new buoys differ from conventional models. In this study, stability estimation and motion analyses for newly-developed buoys under various environmental conditions considering a mooring line were carried out using ANSYS AQWA. Numerical simulations for the estimation of wind and current loads were performed using commercial CFD software, Siemens STAR-CCM+, to increase the accuracy of motion analysis. By comparing the estimated maximum significant motions of the light buoys, it was found that waves and currents were more influential in the motion of the buoys. And, the estimated motions of the buoys became larger as the sea state became worser, which might be the reason that the peak frequencies of the wave spectra got closer to those of the buoys.

Clinical Characteristic and Respiratory Disturbance Index as Correlates of Sleep Architecture in Obstructive Sleep Apnea Syndromes Diagnosed with Polysomnography (수면다원기록법으로 확진된 폐쇄성 수면무호흡증 환자의 임상특성, 그리고 호흡장애지수와 수면 구조간의 상관관계)

  • Kim, Seog-Joo;Park, Doo-Heum;Kim, Yong-Sik;Woo, Jong-Inn;Ha, Kyoo-Seob;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.8 no.2
    • /
    • pp.113-120
    • /
    • 2001
  • Objectives: Obstructive sleep apnea syndrome is common and may produce various symptoms and serious complications. A substantial number of research articles on obstructive sleep apnea syndrome have been published in Korea. However, we found such limitations as lack of sufficient sample size and lack of polysomnography-proven cases. Therefore, we aimed at studying clinical features and sleep structure in a sufficient number of Korean patients with obstructive sleep apnea syndrome diagnostically confirmed with polysomnography. Methods: We studied 801 subjects referred to the Division of Sleep Studies, Seoul National University Hospital, who were diagnosed as having obstructive sleep apnea syndrome with polysomnography. Subjects were excluded if they had central sleep apnea syndrome, periodic limb movement disorder, narcolepsy or REM sleep behavior disorder. Foreign patients were also excluded. First of all, we studied the clinical features of the subjects. Secondly, we compared sleep-related parameters of the study subjects with those of age/sex-matched normal values. Thirdly, correlations of respiratory disturbance index (RDI) with each of the sleep-related parameters were calculated. Results: Among the 801 subjects, 668 were male subjects (83.4%) and 133 female subjects (16.4%). Their mean age was 46.6 years (${\pm}13.5$). The mean body mass index (BMI) was 25.8 (${\pm}3.8$) and subjects with BMI was over 28.0 accounted for 22.8% of the total. Fifty subjects (6.2%) were found to take benzodiazepines. Mean RDI and mean nocturnal oxygen saturation of all subjects was 31.2 (${\pm}24.4$) and 94.5% (${\pm}3.6$), respectively. In comparison with normal values, the subjects showed longer sleep latency, lower sleep efficiency, decreased total slow wave sleep % (TSWS %), and decreased total REM sleep % (TREM %)(p<0.01 in all). RDI had a negative correlation with each TSWS % and TREM % (p<0.01, p<0.01). However, RDI did not have significant correlation with either sleep latency or sleep efficiency. Conclusion: In this study, 6.2% of patients diagnosed as having obstructive sleep apnea syndrome were found to take benzodiazepines, although they are generally considered to be of litte benefit or even dangerous because of the respiratory suppressing effect. The proportion of obese subjects was only 22.8% and Korean patients with obstructive sleep apnea syndrome seem to be less obese than those described in foreign journals. This study also suggests that the severity of obstructive sleep apnea syndrome may have a more significant effect on sleep architecture defined as TSWS % and TREM % than on sleep efficiency.

  • PDF

A CYANOACETYLENE STUDY OF THE MOLECULAR DISK IN STAR FORMING REGIONS

  • Chung, H.S.;Kameya, Osamu;Morimoto, Masaki
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.2
    • /
    • pp.217-271
    • /
    • 1991
  • We have observed dense core around young stellar objects, DR21, S140, Orion-KL, and L1551 using four millimeter-wave transitions of $HC_3N\;J$=4-3, J=5-4, J=10-9, and J=12-11. The spatial distribution of $HC_3N$ emission closely resembles the morphology of the previous CS observations that trace high density gas. These observations reveal the existence of $HC_3N$ dense cores around central IR source, elliptical in shape and almost perpendicular to the CO bipolar outflow axis. Small differences can be explained by that $HC_3N$ molecular line is more optically thin and is seen to be more detailed structure in the neighborhood of central IR sources. In S140 and Orion-KL, massive(${\sim}10\;M_{\odot}$), slowly rotating dense cores lie near at the central IR sources of bipolar outflows. The velocity channel maps of DR21 show that the bipolar outflow gas may have a correlation with the dense core of DR21. We analyzed intensities of the four lines to derive physical conditions in dense core from two methods, LTE and LVG. The column density of $HC_3N$, $N(HC_3N)$, between LTE and LVG calculations agree well with each other. The abundances of $HC_3N$ in each observing source have been estimated using the average values of $n(H_2)$ and $N(HC_3N)$ and assuming the size of dense core. The fractional $HC_3N$ abundances in massive dense cores of DR21, S140, and Orion-KL have a range of $(2-7){\times}10^{-10}$, while that of low mass dense core, L1551, has one order of magnitude greater value of $2{\times}10^{-9}$. This should be considered good agreement with the result by Morris et al.(1976). It may be considered that dense cores of DR21, S140, and Orion-KL may have almost same stage of chemical evolution, and their abundances have a small values relative to that of L1551. The column density $N(HC_3N)$ decreases with increasing distance from the densest part of the cloud, the central infrared source, and have the relation of $N(HC_3N){\varpropto}R^{\alpha}$, where a has a range of 0.65 to 0.89. The values of $n(H_2)$ are not varied with increasing distance from the dense core, and have almost same values. Therefore, it is considered that the dense cores in these regions probably consist of dense clumps in diffuse molecular gas medium, and $n(H_2)$ of each clump is ${\sim}10^5\;cm^{-3}$. Levels in the $T_{ex}$ increases with $n(H_2)$. It is considered that the $HC_3N$ dense cores are not completely thermalized. We examine the relationships between the luminosity of central infrared sources versus mass of the dense cores, and the luminosity of central infrared sources versus molecular hydrogen column density. Luminosities of the central IR sources show good correlation with mass and hydrogen column density of the dense core. Same has been found from CS observations. However, mass and size derived from $HC_3N$ observations are one order of magnitude smaller than those from CS. It can be interpreted that we see more central part of the cloud cores in $NC_3N$ lines than CS lines.

  • PDF

Geophysical characteristics of seamounts around Dok Island (동해 독도주변 해산의 지구물리학적 특성)

  • 강무희;한현철;윤혜수;이치원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.4
    • /
    • pp.267-285
    • /
    • 2002
  • Dok Island, a Pliocene volcano, lies in the southwestern part of the East Sea. Most the work to date have focused primarily on the petrolography of the island, and as a result, the morphological characteristics and internal structure of the volcanic edifices of the Dok Island remain poorly understood. To provide better constraints on these features, bathymetric data with multibeam echo sounder, 32-channel seismic and 3D gravity modeling were used in this study. Three positive topographic highs are present in the study area, and these highs satisfy the seamount criteria. They are named as Dokdo, Tamhae, and Donghae seamounts. 32-channel seismic survey was conducted to investigate the sediment thickness of the area, which shows that there are no sediments near the summit of seamounts. Away from the seamounts, however, sediment becomes thick(>2000 m) toward the western part of the study area, and sediments in the northern and southern parts are about 1000 m thick. Free-Air gravity anomalies in this study generally follow the bathymetric feature with less than -20 mGal at the western part, but increase towards the seamounts. In the summit of the Dokdo Seamount, anomalies reach over 120 mGal, and in Tamhae and Donghae seamounts, the peak anomaly shows 90 and 70 mGals, respectively. All seamounts have an isolated volcanic conduit in their centre and show regional compensation root with 0.5~1.5 km thickness. The flat-topped summit of the seamounts is probably caused by wave truncation, indicating the sea level at the time of formation of the flat-topped geometry. Comparison between the present-day sea level and subsidence level during the opening of the East Sea suggests that the seamounts in the study area have subsided by 200~300 m after the formation. Furthermore, it implies that the seamounts formed over 12~10 Ma.

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020 (2020년 3월 18일-20일 영동지역 강풍 사례 연구)

  • Ahn, Bo-Yeong;Kim, Yoo-Jun;Kim, Baek-Jo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.479-495
    • /
    • 2021
  • This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.

Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs (폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과)

  • Yi, Na Hyun;Kim, Sung Bae;Kim, Jang-Ho Jay;Cho, Yun Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.565-575
    • /
    • 2009
  • In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast load is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, normal strength concrete structures require higher strength to improve their resistance against impact and blast loads. Therefore, a new material with high-energy absorption capacity and high resistance to damage is needed for blast resistance design. Recently, Ultra High Strength Concrete(UHSC) and Reactive Powder Concrete(RPC) have been actively developed to significantly improve concrete strength. UHSC and RPC, can improve concrete strength, reduce member size and weight, and improve workability. High strength concrete are used to improve earthquake resistance and increase height and bridge span. Also, UHSC and RPC, can be implemented for blast resistance design of infrastructure susceptible to terror or impact such as 9.11 terror attack. Therefore, in this study, the blast tests are performed to investigate the behavior of UHSC and RPC slabs under blast loading. Blast wave characteristics including incident and reflected pressures as well as maximum and residual displacements and strains in steel and concrete surface are measured. Also, blast damages and failure modes were recorded for each specimen. From these tests, UHSC and RPC have shown to better blast explosions resistance compare to normal strength concrete.