• 제목/요약/키워드: wave power conversion

검색결과 168건 처리시간 0.036초

Analysis and Design of a Wave Energy Conversion Buoy

  • Oh, Jin-Seok;Bae, Soo-Young;Jung, Sung-Young
    • 한국항해항만학회지
    • /
    • 제32권9호
    • /
    • pp.705-709
    • /
    • 2008
  • In the sea various methods have been conducted to capture wave energy which include the use of pendulums, pneumatic devices, etc. Floating devices, such as a cavity resonance device take advantages of both the water motion and the wave induced motions of the floating body itself. The wave energy converter is known commercially as the WAGB(Wave Activated Generator Buoy) and is used in some commercially available buoys to power navigation aids such as lights and horns. This wave energy converter consists of a circular flotation body which contains a vertical water column that has free communication with the sea. A theoretical analysis of this power generated by a pneumatic type wave energy converter is performed and the results obtained from the analysis are used for a real wave energy converter buoy. This paper is shown to have an optimum value for which maximum power is obtained at a given resonant wave period Also, the length of the internal water column corresponds to that of the water mass in the water column. If designed properly, wave energy converter can take advantage not only of the cavity resonance, but also qf the heaving motion of the buoy. Finally, simulation is performed with a LabVIEW program and the simulation results are applied to a wave energy simulator for modifying design data for a wave energy converter.

Cascode 하모닉 발생기를 이용한 V-band MIMIC Quadruple Subharmonic 믹서 (V-band MIMIC Quadruple Subharmonic Mixer Using Cascode Harmonic Generator)

  • 안단;이문교;진진만;고두현;이상진;김성찬;채연식;박형무;신동훈;이진구
    • 대한전자공학회논문지TC
    • /
    • 제42권5호
    • /
    • pp.55-60
    • /
    • 2005
  • 본 논문에서는 cascode 하모닉 발생기를 이용하여 V-band MIMIC (Millimeter-wave Monolithic Integrated Circuit) quadruple subharmonic 믹서를 설계 및 제작하였다. 고변환 이득 특성을 위하여 cascode 하모닉 발생기를 제안하였다. 제안된 cascode 하모닉 발생기는 기존의 multiplier 구조의 비해 평균 2.9 dB 및 최대 4 dB의 높은 4차 하모닉 출력 특성을 나타내었다. 제작된 V-band subharmonic 믹서의 측정결과 14.5 GHz LO 신호를 13 dBm의 크기로 입력하였을 때 3_4 dB의 높은 변환이득 특성을 얻었다. 또한 -53.6 dB의 LO-to-IF, -46.2 dB의 우수한 LO-to-RF 격리 특성을 나타내었다. 제작된 밀리미터파 subharmonic 믹서는 기존에 발표된 밀리미터파 대역의 subharmonic 믹서에 비해 우수한 변환이득 특성을 나타내었다.

Study on resonant electron cyclotron heating by OSXB double mode conversion at the W7-X stellarator

  • Adlparvar, S.;Miraboutalebi, S.;Kiai, S.M. Sadat;Rajaee, L.
    • Nuclear Engineering and Technology
    • /
    • 제50권7호
    • /
    • pp.1106-1111
    • /
    • 2018
  • Electromagnetic waves potentially have been used to heat overdense nuclear fusion plasmas through a double mode conversion from ordinary to slow extraordinary and finally to Electron Bernstein Wave (EBW) modes, OSXB. This scheme is efficient and has not any plasma density limit of electron cyclotron resonance heating due to cut-off layer. The efficiency of conversion depends on the isotropic launching angles of the microwaves with the plasma parameters. In this article, a two-step mode conversions of OSXB power transmission efficiency affected by the fast extraordinary (FX) loses at upper hybrid frequency are studied. In addition, the kinetic (hot) dispersion relation of a overdense plasma in a full wave analysis of a OSXB in Wendelstein 7X (W7-X) stellarator plasma has been numerically simulated. The influence of plasma dependent parameters such as finite Larmor radius, electron thermal velocity and electron cyclotron frequency are represented.

요요 진동시스템을 이용한 가동물체형 파력 발전 시스템의 기계-전기 통합해석 모델링 및 성능 해석 (Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System)

  • 심규호;박지수;장선준
    • 대한기계학회논문집A
    • /
    • 제39권1호
    • /
    • pp.79-87
    • /
    • 2015
  • 요요 진동시스템을 이용한 파력발전 장치의 모델링 및 성능해석을 수행하였다. 본 연구의 파력발전 시스템은 기계적 요소인 요요진동 시스템, 모션정류 시스템, 동력전달 시스템과 전기적 요소인 발전시스템으로 구성된다. 특히 요요 진동시스템을 적용하여 파랑의 입력을 회전운동으로 변환하였으며 입력되는 파랑의 크기가 공진현상에 의해 증폭되어 높은 에너지 변환효율을 갖도록 구성되었다. 기계적 시스템과 전기적 시스템의 임피던스 연결(Impedance matching)을 통해 기계-전기 통합 해석 모델을 수립하였다. 일정 입력 가속도 0.14g 에서 다양한 파랑 주파수와 시스템 감쇠비에 대한 수치적 성능 해석을 진행하였다. 최대 전기적 출력은 공진주파수에서 부하저항이 최적 부하 조건을 만족할 때 발생하였으며, 이때 최대 전기 출력은 290W, 발전 효율은 48%이다. 해석 결과를 통해 공진 현상을 이용하여 파력발전장치의 출력을 크게 증가시킬 수 있음을 확인하였다.

High Conversion Gain Q-band Active Sub-harmonic Mixer Using GaAs PHEMT

  • Uhm, Won-Young;Lee, Bok-Hyung;Kim, Sung-Chan;Lee, Mun-Kyo;Sul, Woo-Suk;Yi, Sang-Yong;Kim, Yong-Hoh;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제3권2호
    • /
    • pp.89-95
    • /
    • 2003
  • In this paper, we have designed and fabricated high conversion gain Q-band active sub-harmonic mixers for a receiver of millimeter wave wireless communication systems. The fabricated active sub-harmonic mixer uses 2nd harmonic signals of a low local oscillator (LO) frequency. The fabricated mixer was successfully integrated by using $0.1{\;}\mu\textrm{m}$GaAs pseudomorphic high electron mobility transistors (PHEMTs) and coplanar waveguide (CPW) structures. From the measurement, it shows that maximum conversion gain of 4.8 dB has obtained at a RF frequency of 40 GHz for 10 dBm LO power of 17.5 GHz. Conversion gain from the fabricated sub-harmonic mixer is one of the best reported thus far. And a phase noise of the 2nd harmonic was obtained -90.23 dBc/Hz at 100 kHz offset. The active sub-harmonic mixer also ensure a high degree of isolations, which are -35.8 dB from LO-to-IF and -40.5 dB from LO-to-RF, respectively, at a LO frequency of 17.5 GHz.

파력발전용 횡류형 수력터빈의 성능 및 내부유동 (Performance and Internal Flow of a Cross-Flow Type Hydro Turbine for Wave Power Generation)

  • 최영도;조영진;김유택;이영호
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.22-29
    • /
    • 2008
  • Clean and renewable energy technologies using ocean energy give us non-polluting alternatives to fossil and nuclear-fueled power plants to meet establishment of countermeasures against the global warming and growing demand for electrical energy. Among the ocean energy resources, wave power takes a growing interest because of its enormous amount of potential energy in the world. Therefore, various types of wave power conversion system to capture the energy of ocean waves have been developed. However, suitable turbine type is not normalized yet because of relatively low efficiency of the turbine systems. The purpose of this study is to investigate the internal flow and performance characteristics of a cross-flow type hydro turbine, which will be built in a caisson for wave power generation. Numerical simulation using a commercial CFD code is conducted to clarify the effects of the turbine rotation speed and flow rate variation on the turbine characteristics. The results show that the output power of the cross-flow type hydro turbine with symmetric nozzle shape is obtained mainly from Stage 2. Turbine inlet configuration should be designed to obtain large amount of flow rate because the static pressure and absolute tangential velocity are influenced considerably by inlet flow rate.

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

  • An, Dan;Lee, Mun-Kyo;Lee, Sang-Jin;Ko, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제5권3호
    • /
    • pp.210-219
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

WAVESTAR형 파력발전장치의 유압식 2차변환장치의 물리모델 구축에 관한 연구 (A Study on the Physical Model Establishment of Hydraulic Secondary Conversion Device of Wavestar Type Wave Power Generator)

  • 이정희;오재원;하윤진;박지용;천호정;김경환
    • 한국산업융합학회 논문집
    • /
    • 제23권6_2호
    • /
    • pp.999-1006
    • /
    • 2020
  • This study was conducted to develop an efficiency prediction program of a hydraulic secondary energy converter for calculating annual power generation of a Wavestar type wave power generator. Using the period and wave height obtained from the frequency domain analysis, the behavior of the floating body was obtained by assuming the sin function. The piston displacement and speed of the hydraulic cylinder were calculated considering the behavior of the floating body and the shape of the mechanism. The numerical simulation of the hydraulic system was performed by physically modeling the hydraulic cylinders, check valves, hydraulic motors, which are the main devices. In the future, this analysis program will be used to develop a program for estimating annual power generation of a moveable body type wave power generation device.

MMIC 모듈을 이용한 V-band 무선 송수신 시스템의 구축 (Development of V-band Wireless Transceiver using MMIC Modules)

  • 이상진;안단;이문교;고두현;진진만;김성찬;김삼동;박현창;박형무;이진구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.575-578
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$ $_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

  • PDF