DOI QR코드

DOI QR Code

Study on resonant electron cyclotron heating by OSXB double mode conversion at the W7-X stellarator

  • Adlparvar, S. (Tehran North Azad University, Department of Physics) ;
  • Miraboutalebi, S. (Tehran North Azad University, Department of Physics) ;
  • Kiai, S.M. Sadat (Nuclear Science and Technology Research Institute (NSTR), Plasma and Nuclear Fusion Research School) ;
  • Rajaee, L. (Faculty of Science, Department of Physics, University of Qom)
  • Received : 2018.03.25
  • Accepted : 2018.06.25
  • Published : 2018.10.25

Abstract

Electromagnetic waves potentially have been used to heat overdense nuclear fusion plasmas through a double mode conversion from ordinary to slow extraordinary and finally to Electron Bernstein Wave (EBW) modes, OSXB. This scheme is efficient and has not any plasma density limit of electron cyclotron resonance heating due to cut-off layer. The efficiency of conversion depends on the isotropic launching angles of the microwaves with the plasma parameters. In this article, a two-step mode conversions of OSXB power transmission efficiency affected by the fast extraordinary (FX) loses at upper hybrid frequency are studied. In addition, the kinetic (hot) dispersion relation of a overdense plasma in a full wave analysis of a OSXB in Wendelstein 7X (W7-X) stellarator plasma has been numerically simulated. The influence of plasma dependent parameters such as finite Larmor radius, electron thermal velocity and electron cyclotron frequency are represented.

Keywords

References

  1. William Bin, Evolutions of high density plasma heating through O-X-B bouble mode conversion of EC-wave in FTU tokamak, in: Dottorato in Fisica e Astronomia, Ciclo XXII universita Dehli Studi Milano, BICOCCA, 2010.
  2. Loic Curchod, High Density Plasma Heating in the Tokamak a Confguration Variable, Ecole Polytechnique Federale de Lausanne, 2011 these No 5012.
  3. Manfred Thumm, Peter Brand, Harald Braune, Gunter Dammertz, Volker Erckmann, Gerd Gantenbein, Stefan Illy, Walter Kasparek, Stefan Kern, Heinrich P. Laqua, Carsten Lechte, Wolfgang Leonhardt, Nikolai B. Marushchenko, Georg Michel, Bernhard Piosczyk, Martin Schmid, Yuri Turkin, Michael WEISSGERBER, Status and high power performance of the 10-MW 140-GHz ECH system for the stellarator Wendelstein 7-X, Plasma Fusion Res. 5 (2010) S1006. https://doi.org/10.1585/pfr.5.S1006
  4. R.C. Wolf, C.D. Beidler, A. Dinklage, P. Helander, H.P. Laqua, F. Schauer, T. Sunn Pedersen, F. Warmer, Wendelstein 7-X team, Wendelstein 7-X program-demonstration of a stellarator option for fusion energy, IEEE Trans. Plasma Sci. 44 (9) (2016) 9.
  5. R. Prater, Heating and current drive by electron cyclotron waves, Phys. Plasmas 11 (5) (2004) 2349-2376. https://doi.org/10.1063/1.1690762
  6. H. Zohm, Recent experimental progress in electron cyclotron resonance heating and electron cyclotron current drive in magnetically confined fusion plasmas, Fusion Sci. Technol. 52 (2) (2007) 134-144. https://doi.org/10.13182/FST07-A1492
  7. V.E. Golant, Electron cyclotron heating of a tokamak plasma, Phys. Scripta T2 (2) (1982) 428-434.
  8. S. Cirant, Overview of electron cyclotron heating and electron cyclotron current drive launcher development in magnetic fusion devices, Fusion Sci. Technol. 53 (1) (2008) 12-38. https://doi.org/10.13182/FST08-A1650
  9. Ira B. Bernstein, Phys. Rev. 109 (1958) 10. https://doi.org/10.1103/PhysRev.109.10
  10. Heinrich Peter Laqua, Electron Bernstein wave heating and diagnostic, Plasma Phys. Contr. Fusion 49 (4) (2007).
  11. F.W. Crawford, et al., PRL 13 (7) (1964) 229. https://doi.org/10.1103/PhysRevLett.13.229
  12. F. Leuterer, Plasma Phys. 14 (1972) 499-521. https://doi.org/10.1088/0032-1028/14/5/006
  13. A. Popov, On O-X mode conversion in 1D inhomogeneous turbulent plasma, in: 41st EPS Conference on Plasma Physics, 2014.
  14. J. Preinhaelter, V. Kopecky, J. Plasma Phys. 10 (1973) 1. https://doi.org/10.1017/S0022377800007649
  15. H.P. Laqua, V. Erckmann, H.J. Hartfuss, H. Laqua, Phys. Rev. Lett. 78 (1997) 3467. https://doi.org/10.1103/PhysRevLett.78.3467
  16. E.D. Gospodchikov, A.G. Shalashov, E.V. Suvorov, PPCF 48 (2006) 869.
  17. S. Adlparvar, S. Miraboutalebi, S.M. Sadat Kiai, L. Rajaee, Results Phys. 7 (2017) 1965-1970. https://doi.org/10.1016/j.rinp.2017.06.015
  18. E.V. Appleton, J. Inst. Elec. Engrs. 71 (1932) 642.
  19. D.R. Hartree, Proc. Cambridge Phil. Soc. 27 (1931) 143. https://doi.org/10.1017/S0305004100009440
  20. Jose Manuel Garcia Regana, Electron Bernstein Waves Properties in the TJ-ii Stellarator, Universidad complutense de Madrid, 2010.
  21. J. Preinhaelter, V. Kopecky, Penetration of high-frequency waves into a weakly inhomogeneous magnetized plasma at oblique-incidence and their transformation to Bernstein modes, J. Plasma Phys. 10 (1) (1973).
  22. Torsten Stange, Microwave Heating and Diagnostic of Suprathermal Electrons in an Overdense Stellarator Plasma, Genehmigte Dissertation, Max Plank Institut fur Plasmaphysik, 2014 (2214).
  23. E. Mjolhus, J. Plasma Phys. 31 (1984) 7. https://doi.org/10.1017/S0022377800001392
  24. H. Igami, S. Kubo, H.P. Laqua, K. Nagasaki, S. Inagaki, T. Notake, et al., Searching for OXB mode conversion window with monitoring of stry microwave radition in LHD, Rev. Sci. Instrum. 77 (2006).
  25. W. Bin, A. Bruschi, S. Cirant, G. Granucci, A. Moro, S. Nowak, O-X mode conversion evaluations in FTU tokamak for the design of a new launching system, in: 36th EPS Conference on Plasma Phys. Sofia, June 29-July 3, 2009, vol. 33E, ECA, 2009 p1.138.
  26. Tim Happel, Doppler Reflectometry in the TJ-ii Stellarator; Design of an Optimized Doppler Reflectometer and its Application to Turbulence and Radial Electric Field Studies, Universidad Carlos III de Madrid, 2010.
  27. A.K. Ram, S.D. Schultz, Excitation, propagation, and damping of electron Bernstein waves in tokamaks, Phys. Plasmas 7 (10) (2000) 4084-4094. https://doi.org/10.1063/1.1289689
  28. K.G. Budden, Radio Waves in the Ionosphere, Cambridge Univ Press, 1961.
  29. Ya N. Istomin, T.B. Leyser, Parametric decay of an electromagnetic wave near electron cyclotron harmonics, Phys. Plasmas 2 (1995) 2084. https://doi.org/10.1063/1.871295
  30. Vipin K. Yadav, D. Bora, Plasma heating due to X-B mode conversion in a cylindrical ECR plasma system, arXiv:physics/0410112v2, Phys. Plasm. (2004).
  31. J.A. Bittencourt, Fundamentals of Plasma Physics, third ed., Springer, 2004.

Cited by

  1. Study Electron Cyclotron Double Mode Conversion in Overdense Plasma vol.50, pp.1, 2018, https://doi.org/10.1007/s13538-019-00726-w