• Title/Summary/Keyword: wave period distribution

Search Result 115, Processing Time 0.02 seconds

Towards Sustainable Environmental Policy and Management in the Fourth Industrial Revolution: Evidence from Big Data Analytics

  • CHOI, Choongik;KIM, Chunil;KIM, Chulmin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.3
    • /
    • pp.185-192
    • /
    • 2019
  • This study is to explore the relationship between the Fourth Industrial Revolution and the environment using the big data methodology. We scrutinize the trend of the Fourth Industrial revolution, in association with the environment, and provide implications for a more desirable future environmental policy. The results show that the Industrial Revolution has been generally perceived as negative to environment before the 2010s, while it has been widely regarded as positive after the period. It is highly expected that the Fourth Industrial Revolution will be capable of functioning as a new alternative to enhance the quality of the biophysical and social environment. This study justifies that the new wave of technological development may serve as a cure for the enhancement of the environmental quality. The positive linkage between the new technological development and the environment from this study clearly indicates that the environmental industry and environmental technologies will be key economic factors in the next-generation society. They should be of critical importance in shaping our cities into clearer and greener spaces, and people will continuously depend on the development of new environmental technologies in order to correct environmental damages.

The Numerical Simulation of Muti-directional Wasves and Statistical Investigation (다방향파의 수치시뮬레이션 및 통계적 검토)

  • 송명재;조효제;이승건
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.114-120
    • /
    • 1993
  • Responses of marine vehicles and ocean structures in a seaway can be predicted by applying the probabilistic approach. When we consider a linear system, the responses in a random seaway can be evaluated through spectral analysis in the frequency domain. But when we treat nonlinear system in irregular waves, it is necessary to get time history of waves. In the previous study we introduced one-directional waves (long crested waves)as wave environment and carried out calculations and experiments in the waves. But the real sea in which marine vehicles and structures are operated has multi-directional waves (short crested waves). It is important to get a simulated random sea and analyse dynamic problems in the sea. We need entire sample function or probabillty density function to infer statistical value of random process. However if the process are ergodic process, we can get statistical values by analysis of one sample function. In this paper, we developed the simulation technique of multi-directional waves and proved that the time history given by this method keep ergodic characteristics by the statistical analysis.

  • PDF

Risk Assessment of Offshore Wind Turbine Support Structures Considering Scouring (세굴을 고려한 해상풍력터빈 지지구조물 위험도 평가)

  • Kim, Young Jin;Lee, Dae Yong;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.524-530
    • /
    • 2020
  • The risk of offshore wind turbine support structures by scour has been proposed. The proposed utilize probabilities of scour depths and fragilities according to scour depth and a modification of a seismic risk analysis method. The probability distribution of scour depth was calculated using a equation which is suitable to consider marine environmental conditions such as significant wave height, significant period, and current velocity, and dynamic analysis was performed on an offshore wind turbine equipped with an suction bucket to find fragility. Then, the risk of offshore wind turbine support structure considering scour can be found by integrating the scour probability and the fragility.

Site Classification and Design Response Spectra for Seismic Code Provisions - (II) Proposal (내진설계기준의 지반분류체계 및 설계응답스펙트럼 개선을 위한 연구 - (II) 제안)

  • Cho, Hyung Ik;Satish, Manandhar;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.245-256
    • /
    • 2016
  • In the companion paper (I - Database and Site Response Analyses), site-specific response analyses were performed at more than 300 domestic sites. In this study, a new site classification system and design response spectra are proposed using results of the site-specific response analyses. Depth to bedrock (H) and average shear wave velocity of soil above the bedrock ($V_{S,Soil}$) were adopted as parameters to classify the sites into sub-categories because these two factors mostly affect site amplification, especially for shallow bedrock region. The 20 m of depth to bedrock was selected as the initial parameter for site classification based on the trend of site coefficients obtained from the site-specific response analyses. The sites having less than 20 m of depth to bedrock (H1 sites) are sub-divided into two site classes using 260 m/s of $V_{S,Soil}$ while the sites having greater than 20 m of depth to bedrock (H2 sites) are sub-divided into two site classes at $V_{S,Soil}$ equal to 180 m/s. The integration interval of 0.4 ~ 1.5 sec period range was adopted to calculate the long-period site coefficients ($F_v$) for reflecting the amplification characteristics of Korean geological condition. In addition, the frequency distribution of depth to bedrock reported for Korean sites was also considered in calculating the site coefficients for H2 sites to incorporate sites having greater than 30 m of depth to bedrock. The relationships between the site coefficients and rock shaking intensity were proposed and then subsequently compared with the site coefficients of similar site classes suggested in other codes.

Multi-Objective Evaluation for Hybrid Use of Natural Energy in Power System (자연에너지 복합 이용시스템에 대한 다목적 평가)

  • Bae, Sang-Hyun;Lee, Jae-Youn
    • Solar Energy
    • /
    • v.11 no.1
    • /
    • pp.27-40
    • /
    • 1991
  • Research and development works on practical application of natural energy utilization systems involving solar, wind and sea wave energies are under promoting for the purpose of improving the energy consumption structure. These natural energies, made available with the use of relatively simple apparatus, are clean economically efficient and highly effective in the conservation of environment. However, these natural energies also have low energy density, randomness and regional variations. To compensate for these characteristics, hybrid utilization of solar and wind energies is currently under study. The introduction of a plural number of the natural energy hybrid utilization systems into a specific area will affect the economic efficiency, reliability and environmental conservation. Evaluation method of such effects has been examined in this study. The present method consisted of the steps described below. First, available energy was calculated from insolation distribution and wind velocity distribution in the specified area, and then the effect on the configuration of the power system load was obtained. This was followed by the determination of the optimal power dispatch over the specified period and by evaluations in light of economic efficiency, reliability and environmental indices.

  • PDF

A Review on the Analysis of the Equatorial Current System and the Variability during the El Niño Period: Focusing on the Misconceptions in the Field of Secondary Education (적도 해류계 분석 및 엘니뇨 시기의 변동에 관한 논의: 중등 교육 현장의 관련 오개념을 중심으로)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.296-310
    • /
    • 2021
  • El Niño is a typical ocean and atmospheric interaction phenomenon that causes climate variability on a global scale, so it has been used as a very important teaching and learning material in the field of earth science. This study summarized the distribution and dynamics of the equatorial current system. The variability of the equatorial current system during the El Niño period and the associated misconceptions were also investigated. The North Equatorial Current, South Equatorial Current, and Equatorial Under Current significantly weaken during El Niño years. However, the variability of the North Equatorial Counter Current (NECC) during the El Niño period cannot be generalized because the NECC shows southward movement with weakening in the northern area and strengthening in the southern area, along its central axis. In the western Pacific, the NECC is further south during El Niño years, and thus, it has an eastward flow in the equatorial western Pacific. Our analysis of a mass media science article, a secondary school exam, and a survey for incumbent teachers confirmed disparate ideas about the equatorial current system's variability during El Niño periods. This is likely due to inaccurate interpretations of the existing El Niño schematic diagram and insufficient understanding of the equatorial current and wave dynamics.

A Numerical Study on the Effect of the Cylinder Shape Modification on the Forced Convection Around a Circular Cylinder (실린더 형상 변화가 실린더 주위 강제대류에 미치는 영향에 관한 수치적 연구)

  • Kim, Min-Ho;Ha, Man-Yeong;Yoon, Hyun-Sik;Lee, Jin-Wook
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.670-677
    • /
    • 2011
  • Direct numerical simulation are performed in order to investigate the effect of the circular cylinder shape on the forced convection around a circular cylinder at the Reynolds number of 300 and Prandtl number of 0.71. Three-dimensional characteristics of fluid flow and heat transfer around the smooth, wavy and torsional cylinders are investigated. A wavy cylinder has the sinusoidal variation in the cross sectional area along the spanwise direction with the wave length of ${\pi}/3$ and wavy amplitude of 0.1. A torsional cylinder has the twisted elliptic cross section with a torsional period of ${\pi}/2$ and an axis ratio of 1.35 corresponding to the major axis of 1.15 and the minor axis of 0.85. The value of time-and surface-averaged drag coefficient for the smooth cylinder is similar to that for the wavy cylinder, but larger than that for the torsional cylinder. The time and surface-averaged lift coefficient for the smooth cylinder is larger than that for the wavy and torsional cylinders. The time-averaged local heat transfer rate for the wavy and torsional cylinders shows different distribution along the circumferential direction, compared to that for the smooth cylinder because of the shape change in the spanwise direction for the cases of the wavy and torsional cylinders.

Time Trends and Related Factors of Work-related Low Back Pain among Korean Manufacturing Workers : the third through sixth Korean Working Conditions Survey (제3차 - 6차 근로환경조사를 이용한 우리나라 제조업 근로자의 작업관련 요통유병의 시계열추이 및 관련 요인)

  • Seong-Chan, Heo;Jinwook, Bahk;Seonhee, Yang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.325-339
    • /
    • 2022
  • Objective: This study was to perform to identify the distribution characteristics and related factors of work-related low back pain among manufacturing workers in Korea. Methods: We analyzed the third(2011) through sixth(2020) Korean Working Conditions Survey. This study examined changes in the prevalence of work-related low back pain among manufacturing workers and related factors, including demographic characteristics and working conditions. Results: The prevalence of work-related low back pain showed a general tendency to increase during the study periods except for the 5th wave. The prevalence of work-related low back pain was higher in women than in men. The prevalence increased with increasing age and decreased with higher educational attainment. This trend was observed in all survey waves. The prevalence ratios for work-related low back pain according to working conditions varied over the survey period. In general, workers with manual jobs, long working hours, and exposure to tired or painful postures showed relatively higher prevalence ratios than did their counterparts. Providing Information on health and safety, perception that work affects health, and experience of presenteeism were identified as influencing factors for work-related low back pain. Although the working environment is improving, work-related back pain is on the rise. A multifaceted study on risk factors for work-related low back pain is needed. Conclusion: Work-related low back pain is a significant factor affecting the working population's quality of life. The prevalence of work-related low back pain showed a tendency to increase during the study periods. A multifaceted study on risk factors for work-related low back pain is needed.

Nocturnal Sleep Fragmentation in Narcoleptics and Its Clinical Implications (기면병(嗜眠炳)의 야간(夜間) 수면분절(睡眠分節) 및 임상적(臨床的) 의미(意味))

  • Park, Doo-Heum;Sohn, Chang-Ho;Jeong, Do-Un
    • Sleep Medicine and Psychophysiology
    • /
    • v.3 no.1
    • /
    • pp.47-55
    • /
    • 1996
  • Narcolepsy is characterized by sleep attack with excessive daytime sleepiness(EDS), cataplexy, sleep paralysis, and hypnagogic hallucination. Paradoxically, narcoleptics tend to complain of frequent arousals and shallow sleep during the night time despite their excessive sleepiness. However, nocturnal sleep fragmentation in narcoleptics is relatively ignored in treatment strategies, compared with sleep attack/EDS and cataplexy. In our paper, we attempted to investigate further on the poor nocturnal sleep in narcoleptics and to discuss possible treatment interventions. Out of consecutively seen patients at Seoul National University Sleep Disorders Clinic and Division of Sleep Studies, we recruited 57 patients, clinically assessed as having sleep attack and/or EDS. Nocturnal polysomnography and multiple sleep latency test(MSLT) were done in each of the subjects. We selected 19 subjects finally diagnosed as narcolepsy(mean age $26.0{\pm}18.3$ years, 16 men and 3 women) for this study, depending on the nocturnal polysomnographic and MSLT findings as well as clinical history and symptomatology. Any subject co-morbid with other hypersomnic sleep disorders such as sleep apnea or periodic limb movements during sleep was excluded. Sleep staging was done using Rechtschaffen and Kales criteria. Sleep parameters were calculated using PSDENT program(Stanford Sleep Clinic, version 1.2) and were compared with the age-matched normal values provided in the program. In narcoleptics, compared with the normal controls, total wake time was found to be significantly increased with significantly decreased sleep efficiency(p<.01, p<.05, respectively), despite no difference of sleep period time and total sleep time between the two groups. Stage 2 sleep%(p<.05), slow wave sleep%(p<.05), and REM sleep%(p<.01) were found to be significantly decreased in narcoleptics compared with normal controls, accompanied by the significant increase of stage 1 sleep%(p<.01). Age showed negative correlation with slow wave sleep%(p<.05). The findings in the present study indicate significant fragmentation of nocturnal sleep in narcoleptics. Reduction of REM sleep% and the total number of REM sleep periods suggests the disturbance of nocturnal REM sleep distribution in narcoleptics. No significant correlations between nocturnal polysomnographic and MSLT variables in narcoleptics suggest that nocturnal sleep disturbance in narcoleptics may be dealt with, in itself, in diagnosing and managing narcolepsy. With the objective demonstration of qualitative and quantitative characteristics of nocturnal and daytime sleep in narcoleptics, we suggest that more attention be paid to the nocturnal sleep fragmentation in narcoleptics and that appropriate treatment interventions such as active drug therapy and/or circadian rhythm-oriented sleep hygiene education be applied as needed.

  • PDF

Wall Shear Stress Distribution in the Abdominal Aortic Bifurcation : Influence of wall Motion, Impedance Phase Angle, and non-Newtonian fluid (복부대동맥 분기관에서의 벽면전단응력 분포 벽면운동과 임피던스 페이즈 앵글과 비뉴턴유체의 영향)

  • Choi J.H.;Kim C.J.;Lee C.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.261-271
    • /
    • 2000
  • The present study investigated flow dynamics of a two-dimensional abdominal aortic bifurcation model under sinusoidal flow conditions considering wall motion. impedance phase angle(time delay between pressure and flow waveforms), and non-Newtonian fluid using computational fluid dynamics. The wall shear stress showed large variations in the bifurcated region and the wall motion reduced amplitude of wall shear stress significantly. As the impedance phase angle was changed to more negative values, the mean wall shear stress (time-averaged) decreased while the amplitude (oscillatory) of wall shear stress increased. At the curvature site on the outer wall where the mean wall shear stress approached zero. influence of the phase angle was relatively large. The mean wall shear stress decreased by $50\%$ in the $-90^{\circ}$ phase angle (flow wave advanced pressure wave by a quarter period) compared to the $0^{\circ}$ phase angle while the amplitude of wall shear stress increased by $15\%$. Therefore, hypertensive patients who tend to have large negative phase angles become more vulnerable to atherosclerosis according to the low and oscillatory shear stress theory because of the reduced mean and the increased oscillatory wall shear stresses. Non-Newtonian characteristics of fluid substantially increased the mean wall shear stress resulting in a less vulnerable state to atherosclerosis.

  • PDF