• Title/Summary/Keyword: wave nature

Search Result 204, Processing Time 0.027 seconds

Electron Pre-acceleration in Weak Quasi-perpendicular Shocks in Clusters of Galaxies

  • Ha, Ji-Hoon;Kang, Hyesung;Ryu, Dongsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2019
  • Giant radio relics in the outskirts of galaxy clusters have been observed and they are interpreted as synchrotron emission from relativistic electrons accelerated via diffusive shock acceleration (DSA) in weak shocks of Ms < 3.0. In the DSA theory, the particle momentum should be greater than a few times the momentum of thermal protons to cross the shock transition and participate in the Fermi acceleration process. In the equilibrium, the momentum of thermal electrons is much smaller than the momentum of thermal protons, so electrons need to be pre-accelerated before they can go through DSA. To investigate such electron injection process, we study the electron pre-acceleration in weak quasi-perpendicular shocks (Ms = 2.0 - 3.0) in an ICM plasma (kT = 8.6 keV, beta = 100) through 2D particle-in-cell simulations. It is known that in quasi-perpendicular shocks, a substantial fraction of electrons could be reflected upstream, gain energy via shock drift acceleration (SDA), and generate oblique waves via the electron firehose instability (EFI), leading the energization of electrons through wave-particle interactions. We find that such kinetic processes are effective only in supercritical shocks above a critical Mach number, $Ms{\ast}{\sim}2.3$. In addition, even in shocks with Ms > 2.3, energized electrons may not reach high energies to be injected to DSA, because the oblique EFI alone fails to generate long-wavelength waves. Our results should have implications for the origin and nature of radio relics.

  • PDF

Transmission/reflection phenomena of waves at the interface of two half-space mediums with nonlocal theory

  • Adnan, Jahangir;Abdul, Waheed;Ying, Guo
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • The article is about the theoretical analysis of the transmission and reflection of elastic waves through the interface of perfectly connected materials. The solid continuum mediums considered are piezoelectric semiconductors and transversely isotropic in nature. The connection among the mediums is considered in such a way that it holds the continuity property of field variables at the interface. The concept of strain and stress introduced by non-local theory is also being involved to make the study more applicable It is found that, the incident wave results in the generation of four reflected and three transmitted waves including the thermal and elastic waves. The thermal waves generated in the medium are encountered by using the concept of three phase lag heat model along with fractional ordered time thermoelasticity. The results obtained are calculated graphically for a ZnO material with piezoelectric semiconductor properties for medium M1 and CdSc material with transversely isotropic elastic properties for medium M2. The influence of fractional order parameter, non-local parameter, and steady carrier density parameter on the amplitude ratios of reflected and refraction waves are studied graphically by MATLAB.

Surface state Electrons as a 2-dimensional Electron System

  • Hasegawa, Yukio
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.156-156
    • /
    • 2000
  • Recently, the surface electronic states have attracted much attention since their standing wave patterns created around steps, defects, and adsorbates on noble metal surfaces such as Au(111), Ag(110), and Cu(111) were observed by scanning tunneling microscopy (STM). As a typical example, a striking circular pattern of "Quantum corral" observed by Crommie, Lutz, and Eigler, covers a number of text books of quantum mechanics, demonstrating a wavy nature of electrons. After the discoveries, similar standing waves patterns have been observed on other metal and demiconductor surfaces and even on a side polane of nano-tubes. With an expectation that the surface states could be utilized as one of ideal cases for studying two dimensionakl (sD) electronic system, various properties, such as mean free path / life time of the electronic states, have been characterized based on an analysis of standing wave patterns, . for the 2D electron system, electron density is one of the most importnat parameters which determines the properties on it. One advantage of conventional 2D electron system, such as the ones realized at AlGaAs/GaAs and SiO2/Si interfaces, is their controllability of the electrondensity. It can be changed and controlled by a factor of orders through an application of voltage on the gate electrode. On the other hand, changing the leectron density of the surface-state 2D electron system is not simple. On ewqy to change the electron density of the surface-state 2D electron system is not simple. One way to change the electron density is to deposit other elements on the system. it has been known that Pd(111) surface has unoccupied surface states whose energy level is just above Fermi level. Recently, we found that by depositing Pd on Cu(111) surface, occupied surface states of Cu(111) is lifted up, crossing at Fermi level around 2ML, and approaches to the intrinsic Pd surface states with a increase in thickness. Electron density occupied in the states is thus gradually reduced by Pd deposition. Park et al. also observed a change in Fermi wave number of the surface states of Cu(111) by deposition of Xe layer on it, which suggests another possible way of changing electron density. In this talk, after a brief review of recent progress in a study of standing weaves by STM, I will discuss about how the electron density can be changed and controlled and feasibility of using the surface states for a study of 2D electron system. One of the most important advantage of the surface-state 2D electron system is that one can directly and easily access to the system with a high spatial resolution by STM/AFM.y STM/AFM.

  • PDF

Socialist Pop After Cultural Revolution (문화혁명기 이후의 중국의 사회주의 팝아트)

  • Park, Se-Youn
    • The Journal of Art Theory & Practice
    • /
    • no.6
    • /
    • pp.27-50
    • /
    • 2008
  • This thesis examines contemporary Chinese painting after the Cultural Revolution(1966~76), focusing upon so-called "Chinese Pop art", which I termed as "Socialist Pop art". I considered the art of this period within the broader context of social changes especially after the Tienanmen incident of 1989. After the Cultural Revolution during which idolization of Chairman Mao was at its peak, one of the major changes in communist China was that an anti-Mao wave was generated in almost every social class. For example, novels that revealed the hardships during the Cultural Revolution were published. Posters that openly criticized the Maoism were also produced and displayed on the walls, and demand for democracy spurred widespread activist movements among young generations. These broad social changes were also reflected in art. A variety of art movements were introduced from the West to China, and after a period of experimentation with the new imported styles, artists began to apply the new artistic idiom to their works in order to visualize their own social and political realities they lived in. It was a shift from earlier Socialist Realism to a new expression either directly or indirectly, "Socialist Pop", an amalgam of Socialist Realism and Pop art tradition. After the 1989 crackdown of Tienanmen Square protest, when communist government quelled with brutal measures the students, workers, and ordinary people who rose for democracy, greater urge to protest the Deng Xiaoping regime emerged. This time coincided with the gradual emergence of art using Pop art vocabulary to satirize the social reality, the Socialist Pop art, along with many other art forms all with avant-garde spirit. One of the most frequent subjects of Chinese Pop art was visual images of Chairman Mao and his Cultural Revolution, and new China that was saturated with capitalism, which tainted the Chinese way of life with a Western way of consumerism and commercialism. The reason for the popularity of Mao's image was spurred by the "Mao Craze" in the early 1990's. People suddenly began to fall in a kind of nostalgia for the past, and once again, Mao Zedong was idolized as an entity who can heal the problems of modern China who had been marching towards their ultimate destination, the economic development. But this time Chairman Mao was no more an idol but just a popular, commercial product. He is no more an object of worship of almost religious nature but he has become an iconography symbolizing the complex nature of present Chinese society. During this process of depicting the social reality, Chinese artists are making the authority and sanctity of Maoism ineffective. Dealing with this new trend of contemporary Chinese art in view of "Socialist Pop art" two manners of re-creating Pop art can be illustrated: one that incorporates the propaganda posters of the Cultural Revolution; the other borrows from Chinese traditional popular imagery or mass media, such as photos taken during Mao era. What is worth mentioning is that these posters and photos of the Cultural Revolution can be identified as 'popular' media, as they were directed to educate the popular mass, thus combination of this ingenuous pop media with Western Pop art can be fully justified as a genre unique to China. Through this genre, we can discover a new chapter of the Chinese contemporary painting and its society, as their Pop art can be considered as self-portraits true to their present appearances.

  • PDF

Investigation of the Soundscapes of Jeju Olle Route via Soundwalking (Soundwalking을 통한 제주도 올레길의 소리풍경 조사)

  • Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.410-420
    • /
    • 2011
  • The present study aims to investigate the soundscapes of Jeju olle route through the soundwalking. In order to do this, sound measurements and sound recording were undertaken at 10 points along Jeju olle route. Also, loudness of background sound and figure sound were examined. Subjective surveys were carried out using questionnaire and interviews with 32 tourists and 5 acoustical specialists in order to investigate the loudest sound, most pleasant and unpleasant sound, and impressive sound among 17 natural and artificial sounds. Additionally, laboratory experiments were achieved to evaluates sound that have been recorded at the field using same questionnaire and the results were compared with those of field experiments. As a result, the sound heard most in Jeju olle route is the sea wave sound, wind sound, automobile noise, and human voice. It was revealed that the most pleasant sound consisted of nature sound among them, and that unpleasant sounds are artificial sounds. The results of subjective test denote that unpleasant sound is affected by ratio of artificial sound and nature sound. And this also affects the assessment about the loudness of the sound. Also, it was found that the results of both field test and laboratory test are closely correlated in the evaluation of loudness of sound and unpleasant feeling.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Exploring the Possibility of Independent Film Development according to the Current Status of the Domestic OTT Market Centered on Netflix (넷플릭스를 중심으로한 국내 OTT 시장의 현황에 따른 독립영화 발전 가능성 모색)

  • Lee, Jeong-Hyeon;Jeong, Jae-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.8
    • /
    • pp.375-385
    • /
    • 2020
  • This paper attempts to understand the reality of Netflix on the Korean film distribution market environment, and to verify the possibility of developing domestic content centered on independent films in the OTT market, led by Netflix. The research significance of finding the way for Korean diverse films and independent films that cannot be provided with investment and distribution opportunities in various Korean Wave contents will be studied, and the characteristics of Netflix in the Korean film market will be explored. Netflix disseminates Korean contents such as Korean movies and Korean dramas, contributes to the spread of the Korean Wave, and is re-adjusting the paradigm of the distribution market, raising issues that cause a virtuous cycle of profits, controversy over net usage fees, and flooding of Hollywood movies. Considering the nature of intercultural exchange, the interaction between independent film content, Netflix platform, audience, and global market will expand interactive communication opportunities. In other words, just as Netflix uses the Korean media market to make profits, Korea should also use Netflix to try to expand the global market of Korean film contents (K-Film)and maintain a cultural and economic reciprocal attitude.

Development of Environment Friendly Permeable Concrete Bio Blocks (친환경 투수 콘크리트 바이오 블록의 개발)

  • Song, Hyeon-Woo;Lee, Joong-Woo;Kwon, Seong-min;Lee, Tae-Hyeong;Oh, Hyeong-Tak
    • Journal of Navigation and Port Research
    • /
    • v.44 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Rising sea levels along the coast from global warming causes the increase of wave energy along the coast. This rise in sea levels results in relatively deep water levels, which would incur the loss of sand that had not occurred in the past from erosion in coastal areas. Generally, it has been challenging to protect against coastal erosion, and the slope, cross-sectional shape, and materials are selected for the site conditions depending on the change in external forces. However, the application of counter measures based on insufficient understanding of the phenomenon is causing various damage, indicating the need for technological development and converging technologies to improve credibility. In this study, we developed eco-friendly permeable biopolymer concrete blocks to control the coastal erosion by using the Bio-Coast, an effective porous structure that mitigates the destructive erosion caused by the rising sea levels. The hexagonal design of Bio-Coast was derived from the honeycomb, columnar joints, and clover, which are durable and stable structures in nature, and the design was changed to apply bumps on the Bio-Coast filling in the form of a clover to reduce wave overtopping and run-up. Applying the field condition of beaches on the east coast of Korea, the block weight and size were decided and the prototype blocks were manufactured and are ready for field placement. In particular, it is intended to protect coastal areas from destructive erosion by natural and artificial external forces, and to extend the design to river,s lakes, and natural walking trails, to improve the efficiency of quality control and process control through the use of blocks.

In Situ Spectroscopy in Condensed Matter Physics

  • Noh, Tae Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.92-92
    • /
    • 2014
  • Recently, many state-of-art spectroscopy techniques are used to unravel the mysteries of condensed matters. And numerous heterostructures have provided a new avenue to search for new emergent phenomena. Especially, near the interface, various forms of symmetry-breaking can appear, which induces many novel phenomena. Although these intriguing phenomena can be emerged at the interface, by using conventional measurement techniques, the experimental investigations have been limited due to the buried nature of interface. One of the ways to overcome this limitation is in situ investigation of the layer-by-layer evolution of the electronic structure with increasing of the thickness. Namely, with very thin layer, we can measure the electronic structure strongly affected by the interface effect, but with thick layer, the bulk property becomes strong. Angle-resolved photoemission spectroscopy (ARPES) is powerful tool to directly obtain electronic structure, and it is very surface sensitive. Thus, the layer-by-layer evolution of the electronic structure in oxide heterostructure can be investigated by using in situ ARPES. LaNiO3 (LNO) heterostructures have recently attracted much attention due to theoretical predictions for many intriguing quantum phenomena. The theories suggest that, by tuning external parameters such as misfit strain and dimensionality in LNO heterostructure, the latent orders, which is absent in bulk, including charge disproportionation, spin-density-wave order and Mott insulator, could be emerged in LNO heterostructure. Here, we performed in situ ARPES studies on LNO films with varying the misfit strain and thickness. (1) By using LaAlO3 (-1.3%), NdGaO3 (+0.3%), and SrTiO3 (+1.7%) substrates, we could obtain LNO films under compressive strain, nearly strain-free, and tensile strain, respectively. As strain state changes from compressive to tensile, the Ni eg bands are rearranged and cross the Fermi level, which induces a change of Fermi surface (FS) topology. Additionally, two different FS superstructures are observed depending on strain states, which are attributed to signatures of latent charge and spin orderings in LNO films. (2) We also deposited LNO ultrathin films under tensile strain with thickness between 1 and 10 unit-cells. We found that the Fermi surface nesting effect becomes strong in two-dimensions and significantly enhances spin-density-wave order. The further details are discussed more in presentation. This work was collaborated with Hyang Keun Yoo, Seung Ill Hyun, Eli Rotenberg, Ji Hoon Shim, Young Jun Chang and Hyeong-Do Kim.

  • PDF

Study on Human Physiological Responses to Emotional Lighting System using LED Flat Lighting (LED 면조명을 이용한 감성조명시스템의 인체 생리학적 반응에 관한 연구)

  • Kim, Kyung-Tae;Oh, Seung-Yong;Yu, Mi;Yu, Chang-Ho;Kwon, Tae-Kyu
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.29-38
    • /
    • 2014
  • The purpose of this study was to verify human physiological responses to emotional lighting system using LED (light emitting diode) flat lighting. Subjects were ten males in their twenties without medical history to eyes. Colors of LED lighting are red, orange, yellow, green, blue, purple and colorless (white). They were stimulated by LED lighting for 5 minutes. We measured body temperature, heart rate variability (HRV) and electroencephalogram (EEG) before and after color stimulus. In case of EEG analysis, relative power ${\alpha}$ wave ratio decreased in the groups of colorless, red and orange color light. Also, sympathetic nerve was more activated than parasympathetic nerve and the body temperature was increased in the groups of colorless, red, orange, yellow color light. On the other hand, relative power ${\alpha}$ wave ratio increased and parasympathetic nerve was more activated than sympathetic nerve and the body temperature was decreased in the groups of green, blue and purple color light. The results imply that the LED color lighting system in the realistic experiment environment. In the future, studies with compounded both colors and modes according to situation or auditory as nature sound or olfactory as aroma will be required.