• 제목/요약/키워드: wave nature

Search Result 207, Processing Time 0.031 seconds

Identification of Reflection Coefficients for Overground Pipes Using Finite Element Method (유한요소법을 이용한 지상 파이프 반사계수 규명)

  • Kim, Y.W.;Park, K.J.;Kang, W.S.
    • Journal of Power System Engineering
    • /
    • v.15 no.3
    • /
    • pp.18-24
    • /
    • 2011
  • In this study, the reflection of the L(0,2), axially symmetric guided elastic wave from defects in pipes above ground is examined using finite element method. Phase and group velocity dispersion curves for the pipe were presented for the selection of the excitation mode. Some simple signal processing was applied to determine the amplitude of each of the reflected waves and to calculate the reflection coefficient. The results show the reflection coefficient of this mode is very close to a linear function of the circumferential extent of the defect. The motivation for the work was the development of a technique for inspecting chemical plant pipelines, but the study addresses the nature of the reflection function and its general applicability.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication Networks

  • Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.272-277
    • /
    • 2013
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

Effect of Chaos and Instability of Brillouin-Active Fiber Based on Optical Communication

  • Yeom, Keong-Tae;Kim, Kwan-Kyu;Kim, Ji-Hyoung;Kim, Yong-Kab
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • In this paper the effect of instability and chaos in optical fiber networks based on the Internet is described. Nonlinear optical fiber effect especially Brillouin scattering in networks has emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications and a host of other applications. The inherent optical feedback by the back-scattered Stokes wave in optical networks also leads to instabilities in the form of optical chaos. This paradigm of optical chaos in fiber Internet serves as a test for fundamental study of chaos and its suppression and exploitation in practical application in optical fiber communication. This paper attempts to present a survey and some of our research findings on the nature of Brillouin chaotic effect on Internet based optical communication.

  • PDF

THE ORIGIN OF LARGE SCALE GALACTIC MAGNETIC FIELDS

  • SUBRAMANIAN K.
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.155-158
    • /
    • 1996
  • Magnetic fields correlated on several kiloparsec scales are seen in spiral galaxies. Their origin could be due to the winding up of a primordial cosmological field or due to amplification of a small seed field by a turbulent galactic dynamo. Both options have difficulties: There is no known battery mechanism for producing the required primordial field. Equally the turbulent dynamo may self destruct before being able to produce the large scale field, due to excess generation of small scale power. The current status of these difficulties is discussed. The resolution could depend on the nature of the saturated field produced by the small scale dynamo. We argue that the small scale fields do not fill most of the volume of the fluid and instead concentrate into intermittent ropes, with their peak value of order equipartition fields, and radii much smaller than their lengths. In this case these fields neither drain significant energy from the turbulence nor convert eddy motion of the turbulence on the outer scale to wave like motion. This preserves the diffusive effects needed for the large scale dynamo operation.

  • PDF

Numerical Simulation of 2-D Estuaries and Coast by Multi-Domain and the Interpolating Matrix Method (Multi-Domain과 행렬 보간법을 이용한 강 하구와 연안의 2차원 수치해석)

  • Chae H. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.21-28
    • /
    • 1997
  • This paper presents a two-dimensional horizontal implicit model to general circulation in estuaries and coastal seas. The model is developed in non-orthogonal curvilinear coordinates system, using the Interpolating Matrix Method (IMM), in combination with a technique of multi-domain. In the propose model, the Saint-Venant equations are solved by a splitting-up technique, in the successive steps; convection, diffusion and wave propagation. The ability of the proposed model to deal with full scale nature is illustrated by the interpretation of a dye-tracing experiment in the Gironde estuary.

  • PDF

Local response of W-shaped steel columns under blast loading

  • Lee, Kyungkoo;Kim, Taejin;Kim, Jinkoo
    • Structural Engineering and Mechanics
    • /
    • v.31 no.1
    • /
    • pp.25-38
    • /
    • 2009
  • Local failure of a primary structural component induced by direct air-blast loading may be itself a critical damage and lead to the partial or full collapse of the building. As an extensive research to mitigate blast-induced hazards in steel frame structure, a state-of-art analytical approach or high-fidelity computational nonlinear continuum modeling using computational fluid dynamics was described in this paper. The capability of the approach to produce reasonable blast pressures on a steel wide-flange section column was first evaluated. Parametric studies were conducted to observe the effects of section sizes and boundary conditions on behavior and failure of columns in steel frame structures. This study shows that the analytical approach is reasonable and effective to understand the nature of blast wave and complex interaction between blast loading and steel column behavior.

A Study on the Characteristics of the Spray Produced by Two Impinging Jets (충돌제트로 생성되는 분무의 특성에 관한 연구)

  • Kang, B.S.;Poulikakos, D.
    • Journal of ILASS-Korea
    • /
    • v.2 no.4
    • /
    • pp.22-28
    • /
    • 1997
  • In this paper an experimental study of a spray created by two impinging jets is presented utilizing a novel two-reference-beam double-pulse holographic technique. Visualization of the overall spray pattern as well as measurements on the size and velocity of the droplets were performed with the special emphasis on the effect of physical properties of liquids. The overall spray pattern clearly revealed the inherent wave nature In the disintegration process of this type of atomization. The structure of liquid elements near the impingement point is indicative of the mechanisms of the disintegration process. Surface tension plays an important role in the droplet size without any noticeable effect on the spray pattern, whereas viscosity affects the structure without any significant effect on the droplet sire. The droplet velocities were not affected by liquid properties.

  • PDF

Superconducting transition in the Presence of Magnetic order in BaFe1.89Co0.11As2

  • Kim, K.W.;Wolf, T.;Bernhard, C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.4
    • /
    • pp.21-24
    • /
    • 2015
  • We report optical spectra of underdoped $BaFe_{1.89}Co_{0.11}As_2$ that hosts both of magnetic and superconducting orders. The temperature dependent evolution of optical conductivity shows finger prints of the magnetic order and the s-wave nature of the superconducting gaps. Careful inspection on the superconducting state reveals that the two orders compete but coexist in the ground state.

Effects of Illuminating Condition on ERP and Work Performance during a Counting Task (계수작업시 사상관련전위 및 작업성능에 미치는 조명조건의 영향)

  • 임현교
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.1
    • /
    • pp.167-175
    • /
    • 2000
  • Work performance and human error are complicated phenomena so that it is very difficult to grasp the true nature of them. However, Event Related Potential (ERP) may give a clue to them because human brain reflects diverse psychophysiological process. In the present study, the possibility of ERP application to the ergonomic area was evaluated in view of grasping error symptoms. For that purpose, the subjects were asked to count specific characters in a random character matrix on a computer monitor, and their ERP was compared with their performance data. Based upon the results, the amplitude of P300 was not so high as that in the case of the Odd Ball tasks, correct response corresponded with stable ERP with high P300 amplitude whereas wrong response did with unstable, fluctuating ERP with low P300 amplitude. Those results coincided with the work performance, and it was concluded that 3-wave fluorescent with illumination level of 800 lux would be recommendable for the counting task in concern. Conclusively, ERP including P300 might supply an objective clue to the problem of human errors in cognitive process.

  • PDF

Heat jet approach for finite temperature atomic simulations of two-dimensional square lattice

  • Liu, Baiyili;Tang, Shaoqiang
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.371-393
    • /
    • 2016
  • We propose a heat jet approach for a two-dimensional square lattice with nearest neighbouring harmonic interaction. First, we design a two-way matching boundary condition that linearly relates the displacement and velocity at atoms near the boundary, and a suitable input in terms of given incoming wave modes. Then a phonon representation for finite temperature lattice motion is adopted. The proposed approach is simple and compact. Numerical tests validate the effectiveness of the boundary condition in reflection suppression for outgoing waves. It maintains target temperature for the lattice, with expected kinetic energy distribution and heat flux. Moreover, its linear nature facilitates reliable finite temperature atomic simulations with a correct description for non-thermal motions.