• Title/Summary/Keyword: wave equation

Search Result 1,598, Processing Time 0.035 seconds

Precariousness and Happiness of South Korean Young Adults: The Mediating Effects of Uncertainty and Disempowerment (한국 청년의 삶의 불안정성(precariousness)과 행복: 불확실성과 통제권한 부재의 매개효과)

  • Han, Seungheon;Yim, Dahye;Kang, Minah
    • 한국사회정책
    • /
    • v.24 no.2
    • /
    • pp.87-126
    • /
    • 2017
  • This study aims to examine the level of precariousness among young adults in South Korea and analyze the factors affecting their subjective well-being by adopting the three forms of precariousness suggested by Rodgers(1989) such as lack of resource, uncertainty and disempowerment as its analytical framework. Structural Equation Model was used for analyzing the path model of self-rated health, income level and social support(three forms of resource) affecting subjective wellbeing through uncertainty and disempowerment. Study population include young adults aged between 19 to 34 with a sample size of 415 using data of the 8th wave of the Korean General Social Survey(KGSS), 2010. Study population is divided into lower-age group (aged between 19-26) and upper-age group (aged between 27-34) in order to examine the differences between age groups by using Multiple Group Analysis. Study results show that three forms of resources, uncertainty and disempowerment had direct effect on the subjective well-being of South Korean young adults and disempowerment had the most significant effect among the factors. In addition, self-rated health and income level had indirect effect on subjective well-being through both uncertainty and disempowerment while social support had indirect effect on subjective well-being only through disempowerment. Results from the Multiple Group Analysis indicate that among the two age groups, income level only has a significant effect on subjective well-being in the upper-age group. In addition, disempowerment had greater effect on subjective wellbeing among upper-age group than the lower-age group. Based on the study results, this paper suggested policy implications and discussion for further research.

Inference of the Probability Distribution of Phase Difference and the Path Duration of Ground Motion from Markov Envelope (Markov Envelope를 이용한 지진동의 위상차 확률분포와 전파지연시간의 추정)

  • Choi, Hang;Yoon, Byung-Ick
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.5
    • /
    • pp.191-202
    • /
    • 2022
  • Markov envelope as a theoretical solution of the parabolic wave equation with Markov approximation for the von Kármán type random medium is studied and approximated with the convolution of two probability density functions (pdf) of normal and gamma distributions considering the previous studies on the applications of Radiative Transfer Theory (RTT) and the analysis results of earthquake records. Through the approximation with gamma pdf, the constant shape parameter of 2 was determined regardless of the source distance ro. This finding means that the scattering process has the property of an inhomogeneous single-scattering Poisson process, unlike the previous studies, which resulted in a homogeneous multiple-scattering Poisson process. Approximated Markov envelope can be treated as the normalized mean square (MS) envelope for ground acceleration because of the flat source Fourier spectrum. Based on such characteristics, the path duration is estimated from the approximated MS envelope and compared to the empirical formula derived by Boore and Thompson. The results clearly show that the path duration increases proportionately to ro1/2-ro2, and the peak value of the RMS envelope is attenuated by exp (-0.0033ro), excluding the geometrical attenuation. The attenuation slope for ro≤100 km is quite similar to that of effective attenuation for shallow crustal earthquakes, and it may be difficult to distinguish the contribution of intrinsic attenuation from effective attenuation. Slowly varying dispersive delay, also called the medium effect, represented by regular pdf, governs the path duration for the source distance shorter than 100 km. Moreover, the diffraction term, also called the distance effect because of scattering, fully controls the path duration beyond the source distance of 300 km and has a steep gradient compared to the medium effect. Source distance 100-300 km is a transition range of the path duration governing effect from random medium to distance. This means that the scattering may not be the prime cause of peak attenuation and envelope broadening for the source distance of less than 200 km. Furthermore, it is also shown that normal distribution is appropriate for the probability distribution of phase difference, as asserted in the previous studies.

Laboratory Evaluation of Soil Permeability for Sand Using Biot's Acoustic Wave Propagation Theory (Biot 음향 전파 이론을 이용한 실내 사질 시료의 투수계수 산정)

  • Kim, Jin-Won;Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.5-12
    • /
    • 2008
  • Biot proposed the frequency dependent formulation for the propagation of elastic waves in saturated media based on the coupled theory mixtures. Based on Biot theory, a special frequency called 'the characteristic frequency' contains unique information of the permeability of soils. The characteristic frequency is measured from I/Q (inverse quality factor) versus frequency curve by an acoustic sweep test, and the permeability of soils is computed from Biot equation. In this paper, laboratory tests are performed at The University of Mississippi using a large test box. The measured characteristic frequency is consistently obtained at 3500 Hz for mortar sands. The computed permeability of mortar sands based on Biot equation turned out 2.01 $10^{-4}m/sec$, while the permeability from the laboratory constant head test turned out 1.49 $10^{-4}m/sec$. This paper addresses the theoretical background and experimental procedure of this technique.

The Effects of Medical Service Utilizations on Life Satisfaction among the Elderly: Focusing on the Moderating Effects of the Presence of Chronic Illnesses (노년기 의료서비스 이용이 삶의 만족도에 미치는 영향: 만성질환 유무의 조절효과를 중심으로)

  • Jeon, Hae-Sook;Kahng, Sang Kyoung
    • 한국노년학
    • /
    • v.31 no.4
    • /
    • pp.1247-1263
    • /
    • 2011
  • The rapidly aging society entails the increases of medical service utilizations among the elderly. Medical services utilized by the elderly influence their life satisfaction. However, little is known about the effects of medical service utilizations on life satisfaction. Much less is known about whether the effects of medical service utilizations on life satisfaction tend to vary by the presence of chronic health conditions. Including 3,944 individuals aged 65 and over who participated in the 3rd wave of Korean Welfare Panel Study, the current study aims to examine (1) the relationships between medical service utilizations and life satisfaction and (2) whether the effects of medical service utilizations on life satisfaction vary by the presence of chronic health conditions. Data were processed through structural equation modeling(SEM) and multi-group SEM. Results indicate that (1) levels of both outpatient and inpatient service utilizations are related to life satisfaction, whereas levels of health monitoring service utilizations are not and (2) the effects of medical service utilizations varied by the chronic health condition status of the elderly. These results indicate that, in order to enhance levels of life satisfaction, medical services should be strategically utilized by the elderly depending on their chronic health condition status. Based on the findings, we discussed implications for practice and policy, suggesting future research directions based on the limitations of the current study.

Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed (산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발)

  • 권순국;고덕구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.3
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF

Propagation Loss Variability due to Hourly Variations of Underwater Sound Speed profiles in the Korea Strait (대한해협에서 수중음속 구조의 단기변화에 의한 전파손실의 변화정도)

  • Na, Youn-Nam;Shim, Tae-Bo;Kim , Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.1E
    • /
    • pp.5-13
    • /
    • 1995
  • In order to estimate the variability of the wave propagation loss (PL) du e to hourly variations of the sound speed profiles (SSPs), we conducted oceanographic measurements every hour for 39 hours in October 1993 in the Korea Strait. Currents and meteorological data were measured simultaneously to examine the causes of the temporal variations of temperatures. During the experiment, the temporal variations of temperatures in the surface layer highly depend on the water mass transport from adjacent seas. The PL for low frequency (75-300 Hz) is calculated using the parabolic equation scheme and averaged over the whole water depth. The hourly variation of the SSP may cause a PL difference of up to 10 dB over a 30-50 km range. The variability of PL, represented by standard deviation for the 39 SSPs, is as large as 3 dB over a 50 km range.

  • PDF

Transmission Line Based Plucked String Model (전송선로 기반 탄현 모델)

  • Lee, Jingeol;French, Mark
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.361-368
    • /
    • 2013
  • As one way to describe the behavior of a vibrating string, analogies to a transmission line have been made based on the fact that they have oppositely travelling waves on each of them. In such analogies, a rigid end to the string has been represented as an open circuit, and the displacement of the string as the current on the transmission line. However it turns out that the rigid end corresponds to a short circuit, the displacement to the voltage by the theory of the transmission line, and it is confirmed by experiments with circuit simulations. Based on these discoveries, a transmission line based plucked string model comprising a transmission line, two piecewise linear current sources, and switches is proposed. The proposed model is validated by showing that the voltage at the arbitrarily chosen location, and the voltage calculated over an infinitesimal portion at the end of the transmission line are consistent with the displacement at the corresponding location and the force on the rigid end of the string from the well known difference form of a wave equation governing the behavior of the string with its fundamental frequency tuned to that for the proposed model, respectively. Moreover, the applicability of the proposed model to modeling string and wind instruments is presented.

A Fundamental Study on the Database of Response History for Historical Earthquake Records on the Korean Peninsula (한반도 과거 지진기록에 대한 응답이력 데이터베이스 구축 기초 연구)

  • Choi, Inhyeok;Ahn, Jae-Kwang;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.821-831
    • /
    • 2019
  • The 9.12 earthquake (2016.9.12., ML=5.8) and Pohang (2017.11.15., ML=5.4) caused social and economic damage, resulting in a greater public interest in earthquakes than in the past. In the U.S., Japan and Chile, which have high frequency of earthquakes, infrastructure facilities are already managed based on probabilistic seismic hazard analysis (PSHA) and ground motion prediction equation (GMPE) to prepare for and respond to seismic disasters. In South Korea, the aforementioned PSHA and GMPE models have been developed independently through individual researchers. However, the limited disclosure of basic data, calculation methods, and final results created during the model development poses a problem of deploying new data without updating the earthquake that occurs every year. Therefore, this paper describes how to create flatfile, which is the basic data of GMPE, and how to process for seismic waves, and how to create intensity measures.

Evaluation of the Moment Bearing Capacity of Offshore Bucket Platforms in Sand (사질토 지반에 설치된 해상 버켓작업대의 모멘트 지지력 산정)

  • Vicent, Ssenyondo;Gu, Kyo-Young;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.101-109
    • /
    • 2019
  • The bucket platform is a new structure suitable for construction of offshore bridge foundations and providing the temporary support for equipments and labour. The platform can be subjected to moment loading due to the eccentric loading or the horizontal load by wave and wind. Therefore, a three dimensional finite element analysis was performed to evaluate the moment bearing capacity of the bucket platform, varying soil density, the diameter and embedment depth of the bucket. The numerical modeling was verified and compared with the moment-rotation curve from a field loading test. The uniform sandy ground was assumed and the moment load was applied at the top plate of the platform, increasing bucket rotation. The moment-rotation relations were analyzed to determine the moment capacity, which was influenced by the embedment depth and diameter of the bucket. Finally, a preliminary design equation was suggested to estimate the moment bearing capacity.

NUMERICAL ANALYSIS FOR TURBULENT FLOW OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATION (세장비 변화에 따른 3차원 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.13-18
    • /
    • 2009
  • Flight vehicles such as wheel wells and bomb bays have many cavities. The flow around a cavity is characterized as an unsteady flow because of the formation and dissipation of vortices brought about by the interaction between the free stream shear layer and the internal flow of the cavity. The resonance phenomena can damage the structures around the cavity and negatively affect the aerodynamic performance and stability of the vehicle. In this study, a numerical analysis was performed for the cavity flows using the unsteady compressible three-dimensional Reynolds-Averaged Navier-Stokes (RANS) equation with Wilcox's turbulence model. The Message Passing Interface (MPI) parallelized code was used for the calculations by PC-cluster. The cavity has aspect ratios (L/D) of 2.5 ~ 7.5 with width ratios (W/D) of 2 ~ 4. The Mach and Reynolds numbers are 0.4 ~ 0.6 and $1.6{\times}106$, respectively. The occurrence of oscillation is observed in the "shear layer and transient mode" with a feedback mechanism. Based on the Sound Pressure Level (SPL) analysis of the pressure variation at the cavity trailing edge, the dominant frequencies are analyzed and compared with the results of Rossiter's formula. The dominant frequencies are very similar to the result of Rossiter's formula and other experimental data in the low aspect ratio cavity (L/D = ~ 4.5). In the large aspect ratio cavity, however, there are other low dominant frequencies due to the leading edge shear layer with the dominant frequencies of the feedback mechanism. The characteristics of the acoustic wave propagation are analyzed using the Correlation of Pressure Distribution (CPD).

  • PDF