Browse > Article
http://dx.doi.org/10.12652/Ksce.2019.39.6.0821

A Fundamental Study on the Database of Response History for Historical Earthquake Records on the Korean Peninsula  

Choi, Inhyeok (Hanyang University ERICA Campus)
Ahn, Jae-Kwang (KMA)
Kwak, Dongyoup (Hanyang University ERICA Campus)
Publication Information
KSCE Journal of Civil and Environmental Engineering Research / v.39, no.6, 2019 , pp. 821-831 More about this Journal
Abstract
The 9.12 earthquake (2016.9.12., ML=5.8) and Pohang (2017.11.15., ML=5.4) caused social and economic damage, resulting in a greater public interest in earthquakes than in the past. In the U.S., Japan and Chile, which have high frequency of earthquakes, infrastructure facilities are already managed based on probabilistic seismic hazard analysis (PSHA) and ground motion prediction equation (GMPE) to prepare for and respond to seismic disasters. In South Korea, the aforementioned PSHA and GMPE models have been developed independently through individual researchers. However, the limited disclosure of basic data, calculation methods, and final results created during the model development poses a problem of deploying new data without updating the earthquake that occurs every year. Therefore, this paper describes how to create flatfile, which is the basic data of GMPE, and how to process for seismic waves, and how to create intensity measures.
Keywords
GMPE; Flatfile; Seismic wave process; Intensity measures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M. and Kishida, T. (2014). "NGA-West2 database." Earthq. Spectra, Vol. 30, No. 3, pp. 989-1005.   DOI
2 Arias, A. (1970). A measure of earthquake intensity, seismic design for nuclear power plants, Hansen, R. J., MIT Press, Cambridgo, Massachusetts, pp. 438-483.
3 Bastias, N. and Montalva, G. A. (2016). "Chile strong ground motion flatfile." Earthq. Spectra, Vol. 32, No. 4, pp. 2549-2566.   DOI
4 Boore, D. M. (2010). "Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion." Bull. Seism. Soc. Am, Vol. 100, No. 4, pp. 1830-1835.   DOI
5 Dawood, H. M., Rodriguez-Marek, A., Bayless, J., Goulet, C. and Thompson, E. (2016). "A flatfile for the KiK-net database processed using an automated protocol." Earthq. Spectra, Vol. 32, No. 2, pp. 1281-1302.   DOI
6 Emolo, A., Sharma, N., Festa, G., Zollo, A., Convertito, V., Park, J. H., Chi, H. C. and Lim, I. S. (2015). "Ground-motion prediction equations for South Korea Peninsula." Bull. Seism. Soc. Am., Vol. 105, No. 5, pp. 2625-2640.   DOI
7 Goulet, C. A., Kishida, T., Ancheta, T. D., Cramer, C. H., Darragh, R. B., Silva, W. J., Hashash, Y. M. A., Harmon, J., Stewart, J. P., Wooddell, K. E. and Youngs, R. R. (2014). PEER NGA-East database, Pacific Earthquake Engineering Research Center (PEER), California.
8 Jeong, K. H. and Lee, H. S. (2018). "Ground-motion prediction equation for South Korea based on recent earthquake records." Earthquake and Structures, Vol. 15, No. 1, pp. 29-44.   DOI
9 Jo, N. D. and Baag, C. E. (2003). "Estimation of spectrum decay parameter and stochastic prediction of strong ground motions in southeastern Korea." EESK J. Earthq. Eng., Vol. 7, No. 6, pp. 59-70.
10 Kishida, T., Contreras, V., Bozorgnia, Y., Abrahamson, N. A., Ahdi, S. K., Ancheta, T. D., Boore, D. M., Campbell, K. W., Chiou, B. S. J., Darragh, R. B. and Gregor, N. (2018). "NGA-Sub ground motion database." 11NCEE (11 National Conference on Earthquake Engineering Integrating Science, Engineering & Policy), June 25-29, 2018, Los Angeles, CA.
11 Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019a). Multiplatform GEOscience information system, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://mgeo.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean).
12 Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019b). Earthquake and observation net, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://quake.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean).
13 Korea Meteorological Administration (KMA) (2017). 2016 yearbook of earthquakes, Korea meteorological administration (KMA) (in Korean).
14 Korea Meteorological Administration (KMA) (2019). Information of earthquake staton, Korea Meteorological Administration (KMA), Available at: http://necis.kma.go.kr/ (Accessed: Jun 10, 2019) (in Korean).
15 Nation Global Information Infra (NGII) (2019). National territory information platform - DEM90, Nation Global Information Infra (NGII), Available at: http://map.ngii.go.kr/ (Accessed: September 10, 2019) (in Korean).
16 Kotha, S. R., Cotton, F. and Bindi, D. (2018). "A new approach to site classification: Mixed-effects ground motion prediction equation with spectral clustering of site amplification functions." Soil Dynamics and Earthquake Engineering, Vol. 110, pp. 318-329.   DOI
17 Kramer, S. L. and Mitchell, R. A. (2006). "Ground motion intensity measures for liquefaction hazard evaluation." Earthquake Spectra, Vol. 22, No. 2, pp. 413-438.   DOI
18 Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D'Amico, M., Cotton, F. and Bindi, D. (2019). "The pan-European engineering strong motion (ESM) flatfile: compilation criteria and data statistics." Bull. Earthq. Eng., Vol. 17, No. 2, pp. 561-582.   DOI
19 Noh, M. H. and Lee, K. H. (1995). "Estimation of peak ground motions in the southeastern part of the Korean peninsula (II): Development of predictive equations." J. Geological society of Korea, Vol. 31, No. 3, pp. 175-187 (in Korean).
20 Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M. and Vigano, D. (2014). "OpenQuake engine: An open hazard (and risk) software for the global earthquake model." Seism. Research Letters, Vol. 85 No. 3, pp. 692-702.   DOI
21 Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel., Zeng, Y., Rezaeian, S., Harmsen, S. C., Boyd, O. S. and Field, N. (2015). "The 2014 United States national seismic hazard model." Earthq. Spectra, Vol. 31, No. S1, pp. S1-S30.   DOI
22 Stafford, P. J., Rodriguez-Marek, A., Edwards, B., Kruiver, P. P. and Bommer, J. J. (2017). "Scenario dependence of linear site-effect factors for short-period response spectral ordinates scenario dependence of linear site-effect factors for short-period response spectral ordinates." Bull. Seism. Soc. Am., Vol. 107, No. 6, pp, 2859-2872.   DOI
23 R Core Team (2019). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. Available at: URL https://www.R-project.org/ (Accessed: September 10, 2019).
24 Rhie et al. (2015). A basic study on building ShakeMap database of scenario earthquakes in the Korean Peninsula, Report (in Korean).
25 Robinson, N., Regetz, J. and Guralnick, R. P. (2014). EarthEnv-DEM90 digital elevation model, EarthEnv, Available at: https://www.earthenv.org/DEM (Accessed: September 10, 2019).
26 Sheen, D. H. (2011). A study on the analysis of observations capacity by seismic observation level, Report: study on development and application of earthquake monitoring techniques, National Institute of Meteorological Research (KMA) (in Korean).
27 Silva, V. and Horspool, N. (2019). "Combining USGS Shake maps and the open quake-engine for damage and loss assessment." Earthquake Engineering & Structural Dynamics, Vol. 48, No. 6, pp. 634-652.   DOI
28 Yun, K. H., Park, D. H., Chang, C. J. and Sim, T. M. (2008). "Estimation of aleatory uncertainty of the Ground-Motion attenuation relation based on the observed data." Proc. of EESK Conference 2008, Earthquake Engineering Society of Korea, EESK, pp. 116-123 (in Korean).
29 United States Geological Survey (USGS) (2019). Digital elevation - shuttle radar topography mission (SRTM) 1 Arc-second global, United States Geological Survey (USGS), Virginia, Available at: https://earthexplorer.usgs.gov/ (Accessed: September 10, 2019).