• Title/Summary/Keyword: wave energy conversion

Search Result 168, Processing Time 0.033 seconds

Estimation of Wave Power in Korean Coastal Waters (파랑에너지 해석 및 가용량 평가 연구)

  • 김현주;최학선;김선경
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.107-112
    • /
    • 1998
  • The purpose of this study is to analyze the amount of available wave power and its characteristics related to the development of apractical system for ocean wave energy conversion in Korean coastal waters. The analysis method of wave power was established through comparison between theory and numerical simulation of deep sea wave by Inverse Fourier Transform with random phase method. Based on the results of comparison, wave power was estimated by use of data set from observed offshore and coastal waves and hindasted deep sea waves around the Korean peninsula. Annual mean wave power is estimated as about 1.8 ~ 7.0 kW for every metre of wave frontage at East sea, 1.5~5.3 kW at South sea and 1.0 ~ 4.1 kW at West sea, respectively. Mean wave power along deep sea front of coastal waters of Korea amounts to about 4.7 GW. Regional distribution and seasonal variation of wave power were discussed to develop practical utilization system of wave power of not so high grade of available wave power.

  • PDF

Experimental study on multi-level overtopping wave energy convertor under regular wave conditions

  • Liu, Zhen;Han, Zhi;Shi, Hongda;Yang, Wanchang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.651-659
    • /
    • 2018
  • A multi-level overtopping wave energy converter was designed according to the large tidal range and small wave heights in China. It consists of two reservoirs with sloping walls at different levels. The reservoirs share a common outflow duct and a low-head axial turbine. The experimental study was carried out in a laboratory wave-flume to investigate the overtopping performance of the device. The depth-gauges were used to measure the variation of the water level in the reservoirs. The data was processed to derive the time-averaged overtopping discharges. It was found that the lower reservoir can store wave waters at the low water level and break the waves which try to climb up to the upper reservoir. The upper sloping angle and the opening width of the lower reservoir both have significant effects on the overtopping discharges, which can provide more information to the design and optimization of this type of device.

Latching Control Technology for Improvement of Extracted Power from Wave Energy Converter (파력발전기 추출파워 향상을 위한 래칭 제어기법)

  • Cho, Il Hyoung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.4
    • /
    • pp.282-290
    • /
    • 2015
  • In this study, a latching control technology, proposed by Sheng et al.(2015), was applied in order to maximize the extraction efficiency of WEC (Wave Energy Converter), which is the heaving buoy coupled with linear electric generator. The latching control is the phase-control technique for improving the wave energy conversion with appropriate latching duration of keeping the buoy fixed. From the time-domain analysis in regular waves, the latching control technology can significantly improve the heave velocity and extracted power, even though the resonance condition is not satisfied. By using the latching control technology, the draft of buoy as well as the required PTO damping force can be significantly reduced along with increased extracted power, which is a big advantage in manufacturing the WEC.

Application of Secondary Control Hydrostatic Transmission in A Multi-Point Absorbing Wave Energy Converter (다수의 가동물체형 파력발전기에 있어서의 2차측 제어 정유압변속기 응용)

  • Do, H.T.;Ahn, K.K.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper presents a novel concept of wave energy converter for electric generation from the ocean wave energy. In this paper, a Multi-Point Absorbing Wave Energy Converter, shortened as MPAWEC by using Secondary Control Hydrostatic Transmission (SCHST) was proposed. The power take-off (PTO) system in the proposed MPAWEC includes multi heaving buoys to drive hydraulic pumps placed at different points. The application of SCHST in MPAWEC gives some advantages, such as longevity of hydraulic components; more energy is harvested; the variation of the pressure in the accumulator limited; therefore the accumulator volume is reduced and the output speed is more stable, etc. A PID controller was designed for speed control of the hydraulic motor. The simulation results indicated that the speed of the generator was ensured with the relative error as 0.67%; the efficiency of the proposed system was 71.4%.

A Study on the Physical Model Establishment of Hydraulic Secondary Conversion Device of Wavestar Type Wave Power Generator (WAVESTAR형 파력발전장치의 유압식 2차변환장치의 물리모델 구축에 관한 연구)

  • Lee, Jung-Hee;Oh, Jaewon;Ha, Yoon-Jin;Park, Ji-Yong;Cheon, Ho-Jeong;Kim, Kyong-Hwan
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.999-1006
    • /
    • 2020
  • This study was conducted to develop an efficiency prediction program of a hydraulic secondary energy converter for calculating annual power generation of a Wavestar type wave power generator. Using the period and wave height obtained from the frequency domain analysis, the behavior of the floating body was obtained by assuming the sin function. The piston displacement and speed of the hydraulic cylinder were calculated considering the behavior of the floating body and the shape of the mechanism. The numerical simulation of the hydraulic system was performed by physically modeling the hydraulic cylinders, check valves, hydraulic motors, which are the main devices. In the future, this analysis program will be used to develop a program for estimating annual power generation of a moveable body type wave power generation device.

Experimental Evidence and Analysis of a Mode Conversion of Guided Wave Using Magnetostrictive Strip Transducer (자기변형 스트립 탐촉자에 의한 유도초음파 모드 변환에 대한 실험적 검증 및 해석)

  • Cheong, Yong-Moo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.93-97
    • /
    • 2009
  • An advantage of a magnetostrictive strip transducer for a long-range guided wave inspection is that the wave patterns are relatively clear and simple when compared to a conventional piezoelectric ultrasonic transducer. Therefore, if we can characterize the evolution of defect signals, it could be a promising tool for a structural health monitoring of pipes for a long period of time as well as an identification of flaws. However, when evaluating a signal during a realistic field examination, it should be careful because of some spurious signals or false indications, such as signals due to a directionality, multiple reflections, mode conversion, geometrical reflections etc. Mode converted signals from a realistic piping mockup were acquired and analysed. We found mode conversions between a torsional guided wave T(0,1) mode and a flexural F(1,3) or longitudinal L(0,2) mode generated by a magnetostrictive strip transducer. Based on the experimental observations, an interpretation of the source of the mode conversion is discussed in a viewpoint of electromagnetic properties and structure of the strip transducer.

Development of an Unmanned Control System of Induction Generator for a Wave Power Plant

  • Hwan, Jeon-Bong;Lim, Yong-Kon;Hong, Seok-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.74.5-74
    • /
    • 2001
  • The wave power plant is a generating system to convert the wave energy resources to electric energy. ´CHUJEON A´, which is a prototype of wave power plant developed by KORDI(Korea Ocean Research and Development Institute), has been launched for its performance test. A wound rotor induction machine is adopted as a generator for the power plant to acquire constant frequency and voltage over wide range of rotor speed. Because the generator of ´CHUJEON A´ has no connection to the power grid line on land, all of the processes to generate and consume the electricity have to be conducted on the floating plant. This paper deals with the design and implementation of the unmanned control system for ´CHUJEON A´. The system includes generator control system, power conversion and charging system, data acquisition and wireless communication system ...

  • PDF

A Study of the Relationship Analysis of Power Conversion and Changed Capacitance in the Depletion Region of Silicon Solar Cell

  • Kim, Do-Kyeong;Oh, Yeong-Jun;Kim, Sang-Hyun;Hong, Kyeong-Jin;Jung, Haeng-Yeon;Kim, Hoy-Jin;Jeon, Myeong-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.4
    • /
    • pp.177-181
    • /
    • 2013
  • In this paper, silicon solar cells are analyzed regarding power conversion efficiency by changed capacitance in the depletion region. For the capacitance control in the depletion region of silicon solar cell was applied for 10, 20, 40, 80, 160 and 320 Hz frequency band character and alternating current(AC) voltage with square wave of 0.2~1.4 V. Academically, symmetry formation of positive and negative change of the p-n junction is similar to the physical effect of capacitance. According to the experiment result, because input of square wave with alternating current(AC) voltage could be observed to changed capacitance effect by indirectly method through non-linear power conversion (Voltage-Current) output. In addition, when input alternating current(AC) voltage in the silicon solar cell, changed capacitance of depletion region with the forward bias condition and reverse bias condition gave a direct effect to the charge mobility.

A numerical study on the unsteady agglomeration behavior of algae in the ultrasonic wave pressure field (초음파 압력장에서 미세조류 응집 거동에 관한 비정상상태 수치해석 연구)

  • Ha, Ji Soo;Shim, Sung Hun;Jung, Sang Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.67-73
    • /
    • 2017
  • For the bio-fuel conversion of algae, several processes are needed including cultivating, agglomeration, extracting and conversion to the bio-fuel. The production cost for each process makes the total production cost of algae bio-fuel conversion. The production cost of algae bio-fuel has still higher than that of the other commercial bio-fuel. The reduction of production cost for each process enables the competitive price as a bio-fuel. It is difficult to separate the algae from water because of the similar magnitude of density each other. The agglomeration and extracting of algae using ultrasonic wave is rare effect of environmental hazard and also it is appropriate technology for the next generation energy resources. The present research is investigated for the elucidation of algae behavior in the water with the ultrasonics wave. For this purpose, the unsteady computational fluid dynamic analysis has been conducted in the ultrasonic pressure field. The velocity, pressure and algae concentration changes with time have been analysed to clarify the mechanism of algae separation by ultrasonic wave.

Compressional MHD wave transport in the boundary region between cold and hot plasmas

  • Park, Seong-Kook;Lee, Dong-Hun;Kim, Ki-hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.40-40
    • /
    • 2003
  • When the magnetotail is disturbed by an impulsive input such as the substorm onset, compressional magnetohydrodynamic (MHD) waves play an important role in delivering perturbed energy and exciting various wave modes and currents. The plasmasheet, in which relatively hot plasmas exist, is surrounded by relatively cold plasmas at the plasma sheet boundary layer (PSBL) and the equatorial plasmasphere. Since the Alfven speed significantly varies near these regions, the compressional waves are expected to undergo mode conversion by inhomogeneity at the boundary between cold and hot plasma regions. We investigate how the initial compressional MHD wave energy is reflected, transmitted, and absorbed across that boundary by adopting the invariant imbedding method (IIM) which gives the exact reflection, transmission, and absorption coefficients without any theoretical approximations for given frequencies and wave numbers. The IIM method is very useful in quantifying the reflection and transmission of compressional waves in the sense that we can calculate how much fast mode wave energy is delievered into shear Alfven waves or field-aligned currents. Our results show that strongly localized absorption occurs at the boundary region. This feature suggests that localized field-aligned currents can be impulsively excited at such boundary regions by any compressional disturbances, which is highly associated with impulsive auroral brightening at the substorm onset. We compare our results with previous studies in cold inhomogeneous plasmas.

  • PDF