This paper is related to color image segmentation scheme which makes it possible to achieve the excellent segmented results by block-based segmentation using Y/C bit-plane summation image. First, normalized chrominance summation image is obtained by normalizing the image which is summed up the absolutes of color-differential values between R, G, B images. Secondly, upper 2 bits of the luminance image and upper 6bits of and the normalized chrominance summation image are bitwise operated by the pixel to generate the Y/C bit-plane summation image. Next, the Y/C bit-plane summation image divided into predetermined block size, is classified into monotone blocks, texture blocks and edge blocks, and then each classified block is merged to the regions including one more blocks in the individual block type, and each region is selectively allocated to unique marker according to predetermined marker allocation rules. Finally, fine segmented results are obtained by applying the watershed algorithm to each pixel in the unmarked blocks. As shown in computer simulation, the main advantage of the proposed method is that it suppresses the over-segmentation in the texture regions and reduces computational load. Furthermore, it is able to apply global parameters to various images with different pixel distribution properties because they are nonsensitive for pixel distribution. Especially, the proposed method offers reasonable segmentation results in edge areas with lower contrast owing to the regional characteristics of the color components reflected in the Y/C bit-plane summation image.
A novel method for the reconstruction of 3D shape and texture from elemental images has been proposed. Using this method, we can estimate a full 3D polygonal model of objects with seamless triangulation. But in the triangulation process, all the objects are stitched. This generates phantom surfaces that bridge depth discontinuities between different objects. To solve this problem we need to connect points only within a single object. We adopt a segmentation process to this end. The entire process of the proposed method is as follows. First, the central pixel of each elemental image is computed to extract spatial position of objects by correspondence analysis. Second, the object points of central pixels from neighboring elemental images are projected onto a specific elemental image. Then, the center sub-image is segmented and each object is labeled. We used the normalized cut algorithm for segmentation of the center sub-image. To enhance the speed of segmentation we applied the watershed algorithm before the normalized cut. Using the segmentation results, the subdivision process is applied to pixels only within the same objects. The refined grid is filtered with median and Gaussian filters to improve reconstruction quality. Finally, each vertex is connected and an object-based triangular mesh is formed. We conducted experiments using real objects and verified our proposed method.
This paper presents a new algorithm to the segmentation of the FISH images. First, for segmentation of the cell nuclei from background, a threshold is estimated by using the gaussian mixture model and maximizing the likelihood function of gray value of cell images. After nuclei segmentation, overlapped nuclei and isolated nuclei need to be classified for exact nuclei analysis. For nuclei classification, this paper extracted the morphological features of the nuclei such as compactness, smoothness and moments from training data. Three probability density functions are generated from these features and they are applied to the proposed Bayesian networks as evidences. After nuclei classification, segmenting of overlapped nuclei into isolated nuclei is necessary. This paper first performs intensity gradient transform and watershed algorithm to segment overlapped nuclei. Then proposed stepwise merging strategy is applied to merge several fragments in major nucleus. The experimental results using FISH images show that our system can indeed improve segmentation performance compared to previous researches, since we performed nuclei classification before separating overlapped nuclei.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.3
/
pp.687-696
/
2014
This paper presents a semantic object extraction method using user's stroke input, color, and depth information. It is supposed that a semantically meaningful object is surrounded with a few strokes from a user, and has similar depths all over the object. In the proposed method, deciding the region of interest (ROI) is based on the stroke input, and the semantically meaningful object is extracted by using color and depth information. Specifically, the proposed method consists of two steps. The first step is over-segmentation inside the ROI using color and depth information. The second step is semantically meaningful object extraction where over-segmented regions are classified into the object region and the background region according to the depth of each region. In the over-segmentation step, we propose a new marker extraction method where there are two propositions, i.e. an adaptive thresholding scheme to maximize the number of the segmented regions and an adaptive weighting scheme for color and depth components in computation of the morphological gradients that is required in the marker extraction. In the semantically meaningful object extraction, we classify over-segmented regions into the object region and the background region in order of the boundary regions to the inner regions, the average depth of each region being compared to the average depth of all regions classified into the object region. In experimental results, we demonstrate that the proposed method yields reasonable object extraction results.
본 논문은 이동물체 영역을 신뢰성 있게 분리하는데 기초가 되는 seed를 정확하게 선정하고, 선정된 seed를 중심으로 영역을 확장함으로써 이동물체 영역을 분리하기 위한 방법을 제안한다. 고정된 카메라로부터 입력되는 연속된 영상열로부터 초기의 이동물체가 존재하지 않는 영상을 참고영상으로 하여 입력영상과의 차영상을 구하고 차영상의 히스토그램에서 배경잡음 모델링을 통해 배경잡음을 제거한다. 그리고 배경잡음이 제거된 차영상에서 Local Maxima 들을 이용해 후보 seed를 선정한 후, 이드의 특징값들을 분석하여 이동물체의 seed와 배경의 seed 를 결정하고 이 두 개의 seed를 기반으로 watershed 알고리즘을 적용하여 영역을 확장함으로써 이동물체 영역을 추출한다. 제안된 방법을 실제 상황에서 얻은 다양한 영상열에 적용한 결과, 기존의 영역분리 알고리즘보다 주위 잡음의 영향을 적게 받으며 효과적으로 이동물체를 분리할 수 있음을 확인할 수 있었다.
본 논문에서는 2차원 영상을 3차원 영상으로 변환하여 입체감을 주는 방법을 제안하였다. 2D/3D 변환을 위해 Normalized Cut을 사용하여 객체를 분할하였고, 분할된 객체에 Optical Flow 값을 계산해 깊이정보를 생성하여 입체감을 주었다. 객체를 분할하기 위해 Normalized Cut을 이용한 방법에 Optical Flow를 이용한 가중치 값을 추가하여 정확한 객체 분할을 하였고, 처리속도 향상을 위해 영상의 밝기, 색상을 고려한 Watershed 알고리즘을 적용하여 연산량을 줄였다. 분할된 영상에 Optical Flow를 이용하여 색상 정보의 차이를 통해 객체별 고유벡터 값을 연산하여 객체의 움직임 정보를 추출하고 운동시차를 고려해 깊이 정보를 생성하였다. 제안한 방법으로 변환하기 위해 MATLAB을 사용하였다. 제안한 변환 방법은 2D/3D 입체변환에 효과적이었다.
본 논문에서는 1m 해상도의 위성영상으로부터 건물의 경계선을 검출하기 위해 영상분할과 변이지도(disparity map)를 이용하는 새로운 방법을 제안한다. Watershed 방법으로 영상을 분할하고 분할된 영역 내부의 변이를 다중정합창틀(multiple matching window)과 결합된 다차원특징벡터정합(multi-dimensional feature vector matching)을 이용하여 계산한다 분할된 인접 영역들 가운데 panchromatic 및 multispectral 밝기값과 변이의 평균값이 유사하면 두 영역을 결합하여 하나의 영역을 생성하고 이 과정을 반복적으로 수행한다. 영역의 평균 변이값이 기준 값보다 크면 이를 건물 지붕 영역으로 결정한다. IKONOS 위성영상에 제안한 방법을 적용하여 작은 건물이 밀집되어 있는 도시 지역에서 건물 지붕의 영역과 경계선을 효과적으로 검출할 수 있었다.
본 논문은 영상내의 중요한 특징인 에지와 영역을 동시에 고려한 상호 보완적인 영상분할 기법을 제안한다. 에지 또는 영역에 기반한 기법은 서로 상반된 관점의 접근방식으로 에지의 국부적인 특성 또는 영역의 전 역적인 특성에 기반을 두고 있는 반면에. 제안한 하이브리드 기법은 에지 및 영역의 순차적 확장을 통해 이 두 가지 특성을 동시에 고려하고 있다 에지는 에지 검출기로부터 얻은 그래디언트의 임계값을 통해 확장해가며 영역은 Watershed 변환으로부터 얻은 초기분할의 영역간 유사성 및 경계선 길이를 이용해서 확장해 간다. 실험에서, 에지와 영역의 상호작용을 고려하지 알은 개별적인 기법들과 비교함으로써 제안한 알고리즘의 효과성을 확인할 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.349-351
/
2012
영상분할은 입력 영상에서 특정 영역을 분할하는 처리로서 이동물체추적, 영상 감시, 영상 기반 제어등 다양한 분야에서 중요하게 다루는 기술 중 한 가지이다. 기존 영상 분할 방법은 영역을 기반으로 하는 방법과 경계선을 기반으로 하는 방법 등이 있으며 경계선을 기반으로 이동물체 영역을 분할하는 것이 연산량 감소등 의 많은 이점이 있다. 그러나 영상의 경계가 모호한 경우 적용이 곤란하다. 본 논문에서는 이동벡터를 추출한 후 이동벡터를 분할기법을 제안하고자 한다. 입력영상에 대하여 BMA기법을 적용하여 이동벡터를 추출하여 이동벡터 영상을 구한 후, 이동 벡터영상에 워터쉐이드 기법을 적용하여 영상 분할하였다. 기존 경계선을 이용한 영상 분할과 비교한 결과 노이즈가 적은 결과를 얻었다.
Proceedings of the Korea Information Processing Society Conference
/
2004.11a
/
pp.847-850
/
2004
본 논문에서는 모폴로지(Morphology) 재구성(Reconstruction)과 비선형 확산(Non-Linear Diffusion)을 이용하여 칼라 영상을 유사한 영역으로 분할하는 방법을 제안한다. 초기에 RGB 영상을 LUV 색상 공간으로 전환하고, 그 색상공간에 모폴로지를 응용한 재구성(Reconstruction)에 의한 닫힘(Closing) 연산과 비선형 확산(Non-Linear Diffusion)을 적용하여 잡음을 제거한 실험 영상을 획득한다. 이 영상에서 워터쉐드 알고리즘을 위한 칼라 영상의 기울기(Gradient) 정보를 획득하고, 그 영상에 마커(Marker) 정보를 이용한 워터쉐드(Watershed) 알고리즘을 적용하여 영상을 효과적으로 분할한다. 칼라 영상을 대상으로 한 실험에서 제안 방법이 영상을 효과적으로 분할함을 확인 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.