• Title/Summary/Keyword: watershed liming

Search Result 2, Processing Time 0.023 seconds

Research Trends of Forest Liming and the Effects of Liming on Forest Ecosystems (산림 대상 석회 시용의 연구 경향과 산림생태계에 미치는 영향)

  • Kim, Jusub;Chang, Hanna;Roh, Yujin;Han, Seung Hyun;Son, Yowhan
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.50-61
    • /
    • 2018
  • The current study aimed to review the research trends on forest liming by age, country, and research topics, and seeks to summarize the effects of forest liming on soil, vegetation and water system in forest ecosystems. The recent goals of forest liming have been changed in response to changes in the acid deposition, and related studies have been mainly carried out in Europe and North America, where there is noted a massive forest decline, which was subsequently caused by acid rain. Most forest liming studies are noted to have focused on soil responses, however, the number of studies on the responses of vegetation and water system according to a literature review on the subject were relatively small. Meanwhile, forest liming influenced whole forest ecosystems through interaction between the soil, vegetation and water system as associated with the relevant regions. The changes in soil pH, base saturation, and cation exchange capacity by forest liming were noted as different depending on the soil layer and elapsed time after liming. The responses of vegetation to forest liming were shown in above- and below-ground plant growth and plant nutrient concentration, and also were noted to have varied depending on the available regional plant species and noted specific soil conditions. The chemical properties of the water system were changed similarly to those in the soil, leading to notable changes as seen in the planktons and available fish species in the region. Finally, these results could be used to plan further studies on forest liming, which would significantly benefit regional studies to promote the preservation of the species noted for protection in the region.

Atmospheric Acidic Deposition: Response to Soils and Forest Ecosystems (대기 산성 강하물: 토양과 삼림 생태계의 반응)

  • Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.417-431
    • /
    • 2005
  • Soils of Korea experienced with long-term acidic deposition have been exhaustively leached exchangeable base cation (BC) for plant nutrient comparable with soils of forest decline areas in Europe and N. America. Ratios of $BC/Al^{3+}$ of most soils are below than 1, which value is critical load for plant growth. Acid soil applied with dolomitic liming is increased as much as 20% and 244% in concentrations of $Ca^{2+}$ and $Mg^{2+}$, respectively, as well as shrub leaves increase much cation uptake by 1 year later. Ions of $NO_3^-$ and $NH_4^+$ in acid rain are absorbed by the canopy acted as the sink but f is leached out from the canopy to throughfall as the source at Gwangneung forest with a little of acidic deposition, however, such sink and source functions are not found at Kwanaksan forest because of so much deposition. In coniferous and deciduous forested watershed ecosystems ions of $K^+$, $Cl^-$, $NO_3^-$ and $SO_4^{2-}$ from throughfall are retained in forest floor but ions of $Na^+, $Mg^{2+}$ and $Ca^{2+}$ are leached from the floor to streamwater.